Comparison between experimental results and theoretical predictions for P-wave velocity and attenuation at ultrasonic frequency

Wave Motion ◽  
2003 ◽  
Vol 37 (1) ◽  
pp. 1-16 ◽  
Author(s):  
M.S. Diallo ◽  
M. Prasad ◽  
E. Appel
Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. EN117-EN127 ◽  
Author(s):  
Tae-Hyuk Kwon ◽  
Jonathan B. Ajo-Franklin

The accumulation of biopolymers in porous media, produced by stimulating either indigenous bacteria or artificially introduced microbes, readily blocks pore throats and can effectively reduce bulk permeability. Such a microbial clogging treatment can be used for selective plugging of permeable zones in reservoirs and is considered a potentially promising approach to enhance sweep efficiency for microbial enhanced oil recovery (MEOR). Monitoring in situ microbial growth, biopolymer formation, and permeability reduction in the reservoir is critical for successful application of this MEOR approach. We examined the feasibility of using seismic signatures (P-wave velocity and attenuation) for monitoring the in situ accumulation of insoluble biopolymers in unconsolidated sediments. Column experiments, which involved stimulating the sucrose metabolism of Leuconostoc mesenteroides and production of the biopolymer dextran, were performed while monitoring changes in permeability and seismic response using the ultrasonic pulse transmission method. We observed that L. mesenteroides produced a viscous biopolymer in sucrose-rich media. Accumulated dextran, occupying 4%–6% pore volume after [Formula: see text] days of growth, reduced permeability more than one order of magnitude. A negligible change in P-wave velocity was observed, indicating no or minimal change in compressive stiffness of the unconsolidated sediment during biopolymer formation. The amplitude of the P-wave signals decreased [Formula: see text] after [Formula: see text] days of biopolymer production; spectral ratio analysis in the 0.4–0.8-MHz band showed an approximate 30%–50% increase in P-wave attenuation ([Formula: see text]) due to biopolymer production. A flow-induced loss mechanism related to the combined grain/biopolymer structure appeared to be the most plausible mechanism for causing the observed increase in P-wave attenuation in the ultrasonic frequency range. Because permeability reduction is also closely linked to biopolymer volume, P-wave attenuation in the ultrasonic frequency range appears to be an effective indicator for monitoring in situ biopolymer accumulation and permeability reduction and could provide a useful proxy for regions with altered transport properties.


2021 ◽  
Author(s):  
Dariusz Chlebowski ◽  
Zbigniew Burtan

AbstractA variety of geophysical methods and analytical modeling are applied to determine the rockburst hazard in Polish coal mines. In particularly unfavorable local conditions, seismic profiling, active/passive seismic tomography, as well as analytical state of stress calculating methods are recommended. They are helpful in verifying the reliability of rockburst hazard forecasts. In the article, the combined analysis of the state of stress determined by active seismic tomography and analytical modeling was conducted taking into account the relationship between the location of stress concentration zones and the level of rockburst hazard. A longwall panel in the coal seam 501 at a depth of ca.700 m in one of the hard coal mines operating in the Upper Silesian Coal Basin was a subject of the analysis. The seismic tomography was applied for the reconstruction of P-wave velocity fields. The analytical modeling was used to calculate the vertical stress states basing on classical solutions offered by rock mechanics. The variability of the P-wave velocity field and location of seismic anomaly in the coal seam in relation to the calculated vertical stress field arising in the mined coal seam served to assess of rockburst hazard. The applied methods partially proved their adequacy in practical applications, providing valuable information on the design and performance of mining operations.


2021 ◽  
pp. 228973
Author(s):  
Junhao Qu ◽  
Stephen S. Gao ◽  
Changzai Wang ◽  
Kelly H. Liu ◽  
Shaohui Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document