rockburst hazard
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 30)

H-INDEX

11
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6675
Author(s):  
Dariusz Chlebowski ◽  
Zbigniew Burtan

Mining-induced seismicity in the area of development works and proper mining operations is one of the major determinants of the rockburst hazard level in underground mines. Rockburst hazard assessment in Polish collieries is performed by a variety of mining and geophysical methods, including seismic and seismoacoustic techniques, borehole surveys, small diameter drilling, rock strata profiling and analyses of geomechanical properties of rocks, geological structure and geological mining conditions. In the case of zones particularly exposed to potential hazards, it is recommended that analytical or numerical forecasts of the state of stress in the vicinity of workings should be used already at the stage of planning of mining operations. This study summarises the comparative analysis of seismic test data and analytical forecasts of the state of stress in five selected headings in one of the burst-prone collieries within the Upper Silesia Coal Basin in Poland (USCB). As regards the seismic data, duly defined quantitative indicators and energy criteria of the registered seismic activity are recalled in the assessment of rockburst hazard level during the roadheading operations. Analytical simulations utilise a developed geomechanical model and stress–strain relationships stemming from the principles of elastic media mechanics. From the standpoint of mining engineering practice, interpretation of results obtained by the two methods reveals how effective analytical models will be in prognosticating or verification of rockburst hazard conditions.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhen Hao ◽  
Guangzhong Sun ◽  
Haihang Wei ◽  
Jiayu Liu ◽  
Maolin Tian ◽  
...  

Drilling of large-diameter boreholes is regarded as an effective measure for rockburst prevention. By investigating the morphological characteristic and evolution of plastic zone in borehole surrounding rock, the pressure-relief mechanism of large-diameter borehole was ascertained, and the engineering application of large-diameter boreholes was assessed in the 13230 working face of Gengcun Coal Mine, Henan Province, China. The results showed that (1) the plastic zone in surrounding rock of borehole appear as circular, elliptical, and butterfly shapes, in which the maximum size of the butterfly wings of the plastic zone is several times larger than the borehole diameter; (2) under certain stress conditions, multiple large-diameter boreholes distributed in coal seam with rockburst risk lead to the generation and coalescence of large-range butterfly-shape plastic zone. They reduce the stress concentration and capacity for storing elastic energy of coal seam, thus reducing the rockburst risk of the coal seam; (3) large-diameter boreholes significantly decrease the stress concentration in front of the 13230 working face and improve the stress environment in the head entry, promoting the safe mining of the working face.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3869
Author(s):  
Karolina Adach-Pawelus ◽  
Daniel Pawelus

In the polish underground copper mines owned by KGHM Polska Miedz S.A, various types of room and pillar mining systems are used, mainly with roof deflection, but also with dry and hydraulic backfill. One of the basic problems associated with the exploitation of copper deposits is rockburst hazard. Aa high level of rockburst hazard is caused by mining the ore at great depth in difficult geological and mining conditions, among others, in the vicinity of remnants. The main goal of this study is to investigate how hydraulic backfill improves the geomechanical situation in the mining filed and reduce rockburst risk in the vicinity of remnants. Numerical modeling was conducted for the case study of a mining field where undisturbed ore remnant, 40 m in width, was left behind. To compare the results, simulations were performed for a room and pillar mining system with roof deflection and for a room and pillar mining system with hydraulic backfill. Results of numerical analysis demonstrate that hydraulic backfill can limit rock mass deformation and disintegration in the mining field where remnants have been left. It may also reduce stress concentration inside or in the vicinity of a remnant, increase its stability, as well as prevent and reduce seismic and rockburst hazards. Hydraulic backfill as a local support stabilizes the geomechanical situation in the mining field.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ratan Das ◽  
Ranbir Dhounchak ◽  
T. N. Singh

AbstractIn this research, the failure mechanism and anomalous behavior of intact and jointed rock block having a circular tunnel under compression are studied. This was done by monitoring the progressive failure of a rock tunnel subjected to uniaxial loading. The tests were conducted in sandstone blocks and “Acoustic Emission” (AE) technique was used to identify the crack damage and other failure attributes. Three cases have been considered in the research, i.e. tunnel in the intact rock, with horizontal joints, and with vertical joint sets. Images of progressive failure, acoustic signals, and applied loads were simultaneously recorded during the test. The intact block demonstrates continuous crack generation while the block with horizontal joint set shows a stepwise cracking pattern. In the third case where the vertical joints were employed, the deformation was largely roof failure and joint perpendicular extension was dominant. The AE events show that a sudden drop and then a quiet period of seismic “Ib value” could be considered as the precursors to forecast the rockburst hazard. The paper also compares the results of the physical model test with a 2D finite element model. The compared results show good agreement between the physical and numerical models.


2021 ◽  
Vol 773 (1) ◽  
pp. 012062
Author(s):  
AA Tereshkin ◽  
IYu Rasskazov ◽  
PA Anikin ◽  
AV Gladyr ◽  
DS Migunov ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 632
Author(s):  
Mahmood Ahmad ◽  
Ji-Lei Hu ◽  
Marijana Hadzima-Nyarko ◽  
Feezan Ahmad ◽  
Xiao-Wei Tang ◽  
...  

Rockburst is a complex phenomenon of dynamic instability in the underground excavation of rock. Owing to the complex and unclear rockburst mechanism, it is difficult to accurately predict and reasonably assess the rockburst potential. With the increasing availability of case histories from rock engineering and the advancement of data science, the data mining algorithms provide a good way to predict complex phenomena, like rockburst potential. This paper investigates the potential of J48 and random tree algorithms to predict the rockburst classification ranks using 165 cases, with four parameters, namely maximum tangential stress of surrounding rock, uniaxial compressive strength, uniaxial tensile strength, and strain energy storage index. A comparison of developed models’ performances reveals that the random tree gives more reliable predictions than J48 and other empirical models (Russenes criterion, rock brittleness coefficient criterion, and artificial neural networks). Similar comparisons with convolutional neural network resulted at par performance in modeling the rockburst hazard data.


2021 ◽  
Author(s):  
Dariusz Chlebowski ◽  
Zbigniew Burtan

AbstractA variety of geophysical methods and analytical modeling are applied to determine the rockburst hazard in Polish coal mines. In particularly unfavorable local conditions, seismic profiling, active/passive seismic tomography, as well as analytical state of stress calculating methods are recommended. They are helpful in verifying the reliability of rockburst hazard forecasts. In the article, the combined analysis of the state of stress determined by active seismic tomography and analytical modeling was conducted taking into account the relationship between the location of stress concentration zones and the level of rockburst hazard. A longwall panel in the coal seam 501 at a depth of ca.700 m in one of the hard coal mines operating in the Upper Silesian Coal Basin was a subject of the analysis. The seismic tomography was applied for the reconstruction of P-wave velocity fields. The analytical modeling was used to calculate the vertical stress states basing on classical solutions offered by rock mechanics. The variability of the P-wave velocity field and location of seismic anomaly in the coal seam in relation to the calculated vertical stress field arising in the mined coal seam served to assess of rockburst hazard. The applied methods partially proved their adequacy in practical applications, providing valuable information on the design and performance of mining operations.


Sign in / Sign up

Export Citation Format

Share Document