Cloning and characterization of the Entamoeba histolytica pyruvate: ferredoxin oxidoreductase gene

1996 ◽  
Vol 78 (1-2) ◽  
pp. 273-277 ◽  
Author(s):  
Mario Alberto Rodríguez ◽  
María Eugenia Hidalgo ◽  
Tomás Sánchez ◽  
Esther Orozco
1987 ◽  
Vol 246 (2) ◽  
pp. 529-536 ◽  
Author(s):  
K Williams ◽  
P N Lowe ◽  
P F Leadlay

The pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis is an extrinsic protein bound to the hydrogenosomal membrane. It has been solubilized and purified to homogeneity, principally by salting-out chromatography on Sepharose 4B. Low recoveries of active enzyme were caused by inactivation by O2 and the irreversible loss of thiamin pyrophosphate. It is a dimeric enzyme of overall Mr 240,000 and subunit Mr 120,000. The enzyme contains, per mol of dimer, 7.3 +/- 0.3 mol of iron and 5.9 +/- 0.9 mol of acid-labile sulphur, suggesting the presence of two [4Fe-4S] centres, and 0.47 mol of thiamin pyrophosphate. The absorption spectrum of the enzyme is characteristic of a non-haem iron protein. The pyruvate: ferredoxin oxidoreductase from T. vaginalis is therefore broadly similar to the 2-oxo acid: ferredoxin (flavodoxin) oxidoreductases purified from bacterial sources, except that it is membrane-bound.


1971 ◽  
Vol 246 (10) ◽  
pp. 3120-3125
Author(s):  
Kosaku Uyeda ◽  
Jesse C. Rabinowitz

2007 ◽  
Vol 6 (6) ◽  
pp. 940-948 ◽  
Author(s):  
Carrie A. Davis ◽  
Michael P. S. Brown ◽  
Upinder Singh

ABSTRACT Pre-mRNA splicing is essential to ensure accurate expression of many genes in eukaryotic organisms. In Entamoeba histolytica, a deep-branching eukaryote, approximately 30% of the annotated genes are predicted to contain introns; however, the accuracy of these predictions has not been tested. In this study, we mined an expressed sequence tag (EST) library representing 7% of amoebic genes and found evidence supporting splicing of 60% of the testable intron predictions, the majority of which contain a GUUUGU 5′ splice site and a UAG 3′ splice site. Additionally, we identified several splice site misannotations, evidence for the existence of 30 novel introns in previously annotated genes, and identified novel genes through uncovering their spliced ESTs. Finally, we provided molecular evidence for the E. histolytica U2, U4, and U5 snRNAs. These data lay the foundation for further dissection of the role of RNA processing in E. histolytica gene expression.


Sign in / Sign up

Export Citation Format

Share Document