scholarly journals Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis

1987 ◽  
Vol 246 (2) ◽  
pp. 529-536 ◽  
Author(s):  
K Williams ◽  
P N Lowe ◽  
P F Leadlay

The pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis is an extrinsic protein bound to the hydrogenosomal membrane. It has been solubilized and purified to homogeneity, principally by salting-out chromatography on Sepharose 4B. Low recoveries of active enzyme were caused by inactivation by O2 and the irreversible loss of thiamin pyrophosphate. It is a dimeric enzyme of overall Mr 240,000 and subunit Mr 120,000. The enzyme contains, per mol of dimer, 7.3 +/- 0.3 mol of iron and 5.9 +/- 0.9 mol of acid-labile sulphur, suggesting the presence of two [4Fe-4S] centres, and 0.47 mol of thiamin pyrophosphate. The absorption spectrum of the enzyme is characteristic of a non-haem iron protein. The pyruvate: ferredoxin oxidoreductase from T. vaginalis is therefore broadly similar to the 2-oxo acid: ferredoxin (flavodoxin) oxidoreductases purified from bacterial sources, except that it is membrane-bound.

Parasitology ◽  
1993 ◽  
Vol 106 (1) ◽  
pp. 31-37 ◽  
Author(s):  
J. Tachezy ◽  
J. Kulda ◽  
E. Tomková

SUMMARYAerobic resistance of Trichomonas vaginalis to metronidazole was induced in vitro by anaerobic cultivation of drug-susceptible trichomonads with low concentrations of the drug (2–3 μg/ml) for 50 days. Minimal lethal concentrations (MLC) for metronidazole of the resistant derivatives were high in aerobic susceptibility assays (MLC = 216–261.5 μg/ml) but low in anaerobic assays (MLC = 4.2–6.3 μg/ml), surpassing MLC values of their parent strain approximately 50-fold and 3-fold under aerobiosis and anaerobiosis, respectively. Sensitivity to metronidazole under anaerobic conditions and activity of the hydrogenosomal enzyme pyruvate: ferredoxin oxidoreductase indicated that the resistance was of the aerobic type. Dependence of the resistance manifestation on O2 was further confirmed by susceptibility assays in vitro performed in defined gas mixtures of different oxygen content (1–20%). Five percent concentration of O2 proved to be the threshold required for resistance demonstration and the MLC values further increased with increasing O2 concentrations. The in vitro-induced resistance was also demonstrated in vivo by subcutaneous mouse assay. The dose of metronidazole needed to cure 50% of infected mice (DC50) was 223 mg/kg × 3 for resistant derivative MR-3a but 6.6 mg/kg × 3 only for its drug-susceptible parent strain. The metronidazole – resistant strains developed in this study correspond by their properties to drug-resistant T. vaginalis strains isolated from patients refractory to treatment, and promise to be a useful tool in the study of 5-nitroimidazole aerobic resistance.


1982 ◽  
Vol 60 (11) ◽  
pp. 1007-1013 ◽  
Author(s):  
G. Forstner ◽  
A. Salvatore ◽  
L. Lee ◽  
J. Forstner

Intestinal maltase with a neutral pH optimum exists in both a brush border membrane-bound form and a soluble form in suckling rat intestine. Previous experiments in our laboratory have shown that the soluble enzyme contains a component which binds much more tightly to concanavalin A (ConA) than solubilized forms of the membrane enzyme. We studied the origin of this component by subjecting neutral, soluble maltase activity to chromatography on Sepharose 4B at age 13, 18 (preweaning), and 25 (postweaning) days. At 13 days, two maltase peaks were obtained with approximate molecular weights of 400 000 (peak I) and 150 000 (peak II). Peak II was less prominent at 18 days and was absent at 25 days. At 13 days, the majority of peak I consisted of material which was bound between 0.025 and 0.05 M α-methyl mannoside on gradient elution chromatography of ConA-Sepharose. Peak II contained material which eluted between 0.075 and 0.3 M α-methyl mannoside. At 25 days, all of the soluble maltase eluted between 0.025 and 0.04 M α-methyl mannoside. Peak I and peak II maltases had similar pH optima and Km's for maltase. Peak II maltase had a fourfold greater activity toward glycogen than peak I maltase with approximately the same activity for palatinose, turanose, and trehalose. Both maltases were precipitated by an antibody raised against adult membrane-bound maltase. Soluble maltase with neutral pH activity in the suckling rat intestine, therefore, consists of two immunologically related isozymes which differ in their molecular weight, their binding by ConA, and their specificity for glycogen. The small isozyme disappears at or about the time of weaning.


Author(s):  
Shuai Li ◽  
Eirik A. Moreb ◽  
Zhixia Ye ◽  
Jennifer N. Hennigan ◽  
Daniel Baez Castellanos ◽  
...  

AbstractWe report improved NADPH flux and xylitol biosynthesis in engineered E. coli. Xylitol is produced from xylose via an NADPH dependent reductase. We utilize two-stage dynamic metabolic control to compare two approaches to optimize xylitol biosynthesis, a stoichiometric approach, wherein competitive fluxes are decreased, and a regulatory approach wherein the levels of key regulatory metabolites are reduced. The stoichiometric and regulatory approaches lead to a 16 fold and 100 fold improvement in xylitol production, respectively. Strains with reduced levels of enoyl-ACP reductase and glucose-6-phosphate dehydrogenase, led to altered metabolite pools resulting in the activation of the membrane bound transhydrogenase and a new NADPH generation pathway, namely pyruvate ferredoxin oxidoreductase coupled with NADPH dependent ferredoxin reductase, leading to increased NADPH fluxes, despite a reduction in NADPH pools. These strains produced titers of 200 g/L of xylitol from xylose at 86% of theoretical yield in instrumented bioreactors. We expect dynamic control over enoyl-ACP reductase and glucose-6-phosphate dehydrogenase to broadly enable improved NADPH dependent bioconversions.HighlightsDecreases in NADPH pools lead to increased NADPH fluxesPyruvate ferredoxin oxidoreductase coupled with NADPH-ferredoxin reductase improves NADPH production in vivo.Dynamic reduction in acyl-ACP/CoA pools alleviate inhibition of membrane bound transhydrogenase and improve NADPH fluxXylitol titers > 200g/L in fed batch fermentations with xylose as a sole feedstock.


1984 ◽  
Vol 39 (1-2) ◽  
pp. 68-72 ◽  
Author(s):  
Toshihisa Ohshima ◽  
Matsumi Ohshima ◽  
Gerhart Drews

Abstract Soluble NADH dehydrogenase was purified to homogeneity from chemotrophically grown cells of Rhodopseudomonas capsulata by ammonium sulfate fractionation, AH -Sepharose 4B chromatography and FMN-Sepharose 6B affinity chromatography. The enzyme contains a single polypeptide chain of an apparent M, of 37000, suggesting that the subunit structure is different from that of the membrane-bound enzyme. The purified soluble NADH dehydrogenase requires flavin compounds, e.g., FMN, FAD and riboflavin, for activity. Addition of FMN and FAD. but not riboflavin, to the enzyme solution stabilized the enzyme. The pH optimum for activity was at 7.5. The enzyme was specific for NADH as an electron donor while NADPH was inert. Menadione, ferricyanide, cytochrome c and DCIP served as an electron acceptor. The M ichaelis constants for NADH. DCIP, FM N. and cytochrome c were 45, 2.9. 7.9 and 15 μM, respectively. Many properties of soluble NADH dehydrogenase were substantially different from those of the membrane-bound enzyme, suggesting different functions.


Microbiology ◽  
2011 ◽  
Vol 157 (12) ◽  
pp. 3469-3482 ◽  
Author(s):  
Patricia Meza-Cervantez ◽  
Arturo González-Robles ◽  
Rosa Elena Cárdenas-Guerra ◽  
Jaime Ortega-López ◽  
Emma Saavedra ◽  
...  

The Trichomonas vaginalis 120 kDa protein adhesin (AP120) is induced under iron-rich conditions and has sequence homology with pyruvate : ferredoxin oxidoreductase A (PFO A), a hydrogenosomal enzyme that is absent in humans. This homology raises the possibility that, like AP120, PFO might be localized to the parasite surface and participate in cytoadherence. Here, the cellular localization and function of PFO that was expressed under various iron concentrations was investigated using a polyclonal antibody generated against the 50 kDa recombinant C-terminal region of PFO A (anti-PFO50). In Western blot assays, this antibody recognized a 120 kDa protein band in total protein extracts, and proteins with affinity to the surface of HeLa cells from parasites grown under iron-rich conditions. In addition to localization that is typical of hydrogenosomal proteins, PFOs that were expressed under iron-rich conditions were found to localize at the surface. This localization was demonstrated using immunofluorescence and co-localization assays, as well as immunogold transmission electron microscopy. In addition to describing its enzyme activity, we describe a novel function in trichomonal host interaction for the PFO localized on the parasite surface. The anti-PFO50 antibody reduced the levels of T. vaginalis adherence to HeLa cell monolayers in a concentration-dependent manner. Thus, T. vaginalis PFO is an example of a surface-associated cell-binding protein that lacks enzyme activity and that is involved in cytoadherence. Additionally, PFO behaves like AP120 in parasites grown under iron-rich conditions. Therefore, these data suggest that AP120 and PFO A are encoded by the same gene, namely pfo a.


1996 ◽  
Vol 78 (1-2) ◽  
pp. 273-277 ◽  
Author(s):  
Mario Alberto Rodríguez ◽  
María Eugenia Hidalgo ◽  
Tomás Sánchez ◽  
Esther Orozco

1983 ◽  
Vol 211 (3) ◽  
pp. 661-670 ◽  
Author(s):  
M Brett ◽  
J B C Findlay

Ovine rhodopsin may be cleaved in situ by Staphylococcus aureus V8 proteinase into two membrane-bound fragments designated V8-L (27 000 mol.wt.) and V8-S (12 000 mol.wt.). After purification of the proteolysed complex by affinity chromatography in detergent using concanavalin A immobilized on Sepharose 4B, the two polypeptide fragments may be separated by gel-permeation chromatography on Sephadex LH-60. Digestion of the N-terminal-derived V8-L fragment with CNBr in 70% (v/v) trifluoroacetic acid resulted in a peptide mixture that could be fractionated by procedures involving gel-permeation chromatography in organic and aqueous solvents and the use of differential solubility. The complete or partial sequences of all ten peptides are reported.


Sign in / Sign up

Export Citation Format

Share Document