scholarly journals Antisense inhibition of myoD expression in regenerating rat soleus muscle is followed by an increase in the mRNA levels of myoD, myf-5 and myogenin and by a retarded regeneration

2002 ◽  
Vol 1590 (1-3) ◽  
pp. 52-63 ◽  
Author(s):  
Ernő Zádor ◽  
Sándor Bottka ◽  
Frank Wuytack
2002 ◽  
Vol 282 (1) ◽  
pp. E31-E37 ◽  
Author(s):  
Bonaventure L. Awede ◽  
Jean-Paul Thissen ◽  
Jean Lebacq

Clenbuterol induces hypertrophy and a slow-to-fast phenotype change in skeletal muscle, but the signaling mechanisms remain unclear. We hypothesized that clenbuterol could act via local expression of insulin-like growth factor I (IGF-I). Administration of clenbuterol to 3-mo-old female Wistar rats resulted in a 10 and 13% increase of soleus muscle mass after 3 and 9 days, respectively, reaching 16% after 4 wk. When associated with triiodothyronine, clenbuterol induced a dramatic slow-to-fast phenotype change. In parallel, clenbuterol administration induced in soleus muscle a fivefold increase in IGF-I mRNA levels associated with an eightfold increase in IGF-binding protein (IGFBP)-4 and a fivefold increase of IGFBP-5 mRNA levels on day 3. This increased IGF-I gene expression was associated with an increase in muscle IGF-I content, already detected on day 1 and persisting until day 5 without increase in serum IGF-I concentrations. These data show that muscle hypertrophy induced by clenbuterol is associated with a local increase in muscle IGF-I content. They suggest that clenbuterol-induced muscle hypertrophy could be mediated by local production of IGF-I.


1996 ◽  
Vol 316 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Daniel TAILLANDIER ◽  
Eveline AUROUSSEAU ◽  
Dominique MEYNIAL-DENIS ◽  
Daniel BECHET ◽  
Marc FERRARA ◽  
...  

Nine days of hindlimb suspension resulted in atrophy (55%) and loss of protein (53%) in rat soleus muscle due to a marked elevation in protein breakdown (66%, P < 0.005). To define which proteolytic system(s) contributed to this increase, soleus muscles from unweighted rats were incubated in the presence of proteolytic inhibitors. An increase in lysosomal and Ca2+-activated proteolysis (254%, P < 0.05) occurred in the atrophying incubated muscles. In agreement with the measurements in vitro, cathepsin B, cathepsins B+L and m-calpain enzyme activities increased by 111%, 92% and 180% (P < 0.005) respectively in the atrophying muscles. Enhanced mRNA levels for these proteinases (P < 0.05 to P < 0.001) paralleled the increased enzyme activities, suggesting a transcriptional regulation of these enzymes. However, the lysosomal and Ca2+-dependent proteolytic pathways accounted for a minor part of total proteolysis in both control (9%) and unweighted rats (18%). Furthermore the inhibition of these pathways failed to suppress increased protein breakdown in unweighted muscle. Thus a non-lysosomal Ca2+-independent proteolytic process essentially accounted for the increased proteolysis and subsequent muscle wasting. Increased mRNA levels for ubiquitin, the 14 kDa ubiquitin-conjugating enzyme E2 (involved in the ubiquitylation of protein substrates) and the C2 and C9 subunits of the 20 S proteasome (i.e. the proteolytic core of the 26 S proteasome that degrades ubiquitin conjugates) were observed in the atrophying muscles (P < 0.02 to P < 0.001). Analysis of C9 mRNA in polyribosomes showed equal distribution into both translationally active and inactive mRNA pools, in either unweighted or control rats. These results suggest that increased ATP-ubiquitin-dependent proteolysis is most probably responsible for muscle wasting in the unweighted soleus muscle.


2009 ◽  
Vol 30 (3-4) ◽  
pp. 139-144 ◽  
Author(s):  
M. Monda ◽  
C. Vicidomini ◽  
An Viggiano ◽  
S. Sampaolo ◽  
G. Di Iorio ◽  
...  

2003 ◽  
Vol 95 (5) ◽  
pp. 2171-2179 ◽  
Author(s):  
J. Scott Pattison ◽  
Lillian C. Folk ◽  
Richard W. Madsen ◽  
Frank W. Booth

After cessation of hindlimb immobilization, which resulted in a 27-37% loss in soleus mass, the atrophied soleus muscle of young but not old rats regrows to its mass before treatment. We hypothesized that during remobilization the mRNA levels of growth potentiating factor(s) would be present in the soleus muscle of young (3- to 4-mo-old) but absent in old (30- to 31-mo-old) Fischer 344 × Brown Norway rats or that mRNAs for growth inhibitory factor(s) would be absent in young but present in old. Gene expression levels of >24,000 transcripts were determined by using Affymetrix RGU34A-C high-density oligonucleotide microarrays in soleus muscles at 3, 6, 10, and 30 days of remobilization after cessation of a 10-day period of hindlimb immobilization. Each muscle sample was applied to an independent set of arrays. Recovery-related differences were determined by using a three-factor ANOVA with a false discovery rate-adjustment of P = 0.01, which yielded 64 significantly different probe sets. Elfin, amphiregulin, and clusterin mRNAs were selected for further confirmation by real-time PCR. Elfin mRNA levels were less in old than in young rats at 6, 10, and 30 days of remobilization. Amphiregulin expression exhibited a unique spike on the 10th day of successful regrowth in young rats but remained unchanged old. Clusterin mRNA was unchanged in young muscles but was elevated on the 3rd, 6th, and 10th days of recovery in old soleus muscles. The mRNAs identified as differentially expressed between young and old recovery may modulate muscle growth that could highlight new candidate mechanisms to explain the failure of old soleus muscle to recover lost muscle mass.


Diabetes ◽  
1987 ◽  
Vol 36 (9) ◽  
pp. 1041-1046 ◽  
Author(s):  
S. Sasson ◽  
D. Edelson ◽  
E. Cerasi

Sign in / Sign up

Export Citation Format

Share Document