membrane transport
Recently Published Documents


TOTAL DOCUMENTS

2456
(FIVE YEARS 143)

H-INDEX

100
(FIVE YEARS 8)

2022 ◽  
pp. 607-645
Author(s):  
Gerald Litwack
Keyword(s):  

2021 ◽  
Author(s):  
Jan Stephan Wichers ◽  
Paolo Mesén-Ramírez ◽  
Jing Yu-Strzelczyk ◽  
Gwendolin Fuchs ◽  
Jan Stäcker ◽  
...  

Membrane transport proteins perform crucial roles in cell physiology. The obligate intracellular parasite Plasmodium falciparum, an agent of human malaria, relies on membrane transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, exchange of metabolites between organelles and generation and maintenance of transmembrane electrochemical gradients for its growth and replication within human erythrocytes. Despite their importance for Plasmodium cellular physiology, the functional roles of a number of membrane transport proteins remain unclear, which is particularly true for orphan membrane transporters that have no or limited sequence homology to transporter proteins in other evolutionary lineages. Therefore, in the current study, we applied endogenous tagging, targeted gene disruption, conditional knockdown and knockout approaches to investigate the subcellular localization and essentiality of six membrane transporters during intraerythrocytic development of P. falciparum parasites. They are localized at different subcellular structures – the food vacuole, the apicoplast, and the parasite plasma membrane – and showed essentiality of four out of the six membrane transporters during asexual development. Additionally, the plasma membrane resident transporter 1 (PMRT1, PF3D7_1135300), a unique Plasmodium-specific plasma membrane transporter, was shown to be essential for gametocytogenesis. Heterologous expression of wild-type and mutation constructs in Xenopus laevis oocytes indicated ion transport upon membrane hyperpolarization and a functional role of negatively charged amino acids protruding into the parasitophorous vacuole lumen. Overall, we reveal the importance of four orphan transporters to blood stage P. falciparum development and provide the first functional characterization of PfPMRT1, an essential parasite membrane transporter.


2021 ◽  
Author(s):  
Paola Pelizzo ◽  
Marco Stebel ◽  
Nevenka Medic ◽  
Paola Sist ◽  
Andreja Vanzo ◽  
...  

Abstract Background & Aims: One of the organ-specific functions of the liver is the excretion of bilirubin into the bile. Membrane transport of bilirubin from the blood to the liver is not only an orphan function, as there is no link to the protein/gene entities that carry it out, but also a poorly characterised function. The aim of this study was to investigate the pharmacology of bilirubin uptake in the liver of the female Wistar rat to improve basic knowledge in this neglected area of liver physiology.Methods: We treated isolated, perfused rat livers with repeated single-pass, albumin-free bilirubin boli. We monitored both bilirubin and bilirubin glucuronide in perfusion effluent with a biofluorometric assay. We tested the ability of nine molecules known to be substrates or inhibitors of sinusoidal membrane transporters to inhibit the hepatic uptake of bilirubin.Results: We found that cyanidin 3-glucoside and malvidin 3-glucoside are the only molecules that inhibit bilirubin uptake. These dietary anthocyanins resemble bromosulfophthalein (BSP), a substrate of several sinusoidal membrane transporters. The SLCO-specific substrates estradiol-17 beta-glucuronide, pravastatin, and taurocholate inhibited only bilirubin glucuronide uptake. Cyanidin 3-glucoside and taurocholate acted at physiological concentrations. The SLC22-specific substrates indomethacin and ketoprofen were inactive. We demonstrated the existence of a bilirubin glucuronide transporter that is inhibited by bilirubin, a fact reported only once in the literature.Conclusions: Data indicate that bilirubin and bilirubin glucuronide are transported into the liver via pharmacologically distinct membrane transport pathways. Some dietary anthocyanins may physiologically modulate the uptake of bilirubin into the liver.


2021 ◽  
pp. 13-58
Author(s):  
Gangadhar Sunkara ◽  
Uday B. Kompella

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1760
Author(s):  
Tamaryn J. Cashmore ◽  
Stephan Klatt ◽  
Rajini Brammananth ◽  
Arek K. Rainczuk ◽  
Paul K. Crellin ◽  
...  

Cell walls of bacteria of the genera Mycobacterium and Corynebacterium contain high levels of (coryno)mycolic acids. These very long chain fatty acids are synthesized on the cytoplasmic leaflet of the inner membrane (IM) prior to conjugation to the disaccharide, trehalose, and transport to the periplasm. Recent studies on Corynebacterium glutamicum have shown that acetylation of trehalose monohydroxycorynomycolate (hTMCM) promotes its transport across the inner membrane. Acetylation is mediated by the membrane acetyltransferase, TmaT, and is dependent on the presence of a putative methyltransferase, MtrP. Here, we identify a third protein that is required for the acetylation and membrane transport of hTMCM. Deletion of the C. glutamicum gene NCgl2761 (Rv0226c in Mycobacterium tuberculosis) abolished synthesis of acetylated hTMCM (AcTMCM), resulting in an accumulation of hTMCM in the inner membrane and reduced synthesis of trehalose dihydroxycorynomycolate (h2TDCM), a major outer membrane glycolipid. Complementation with the NCgl2761 gene, designated here as mmpA, restored the hTMCM:h2TDCM ratio. Comprehensive lipidomic analysis of the ΔtmaT, ΔmtrP and ΔmmpA mutants revealed strikingly similar global changes in overall membrane lipid composition. Our findings suggest that the acetylation and membrane transport of hTMCM is regulated by multiple proteins: MmpA, MtrP and TmaT, and that defects in this process lead to global, potentially compensatory changes in the composition of inner and outer membranes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masaya Fujita ◽  
Shodai Yano ◽  
Koki Shibata ◽  
Mizuki Kondo ◽  
Shojiro Hishiyama ◽  
...  

AbstractTonB-dependent transporters (TBDTs) mediate outer membrane transport of nutrients using the energy derived from proton motive force transmitted from the TonB–ExbB–ExbD complex localized in the inner membrane. Recently, we discovered ddvT encoding a TBDT responsible for the uptake of a 5,5-type lignin-derived dimer in Sphingobium sp. strain SYK-6. Furthermore, overexpression of ddvT in an SYK-6-derivative strain enhanced its uptake capacity, improving the rate of platform chemical production. Thus, understanding the uptake system of lignin-derived aromatics is fundamental for microbial conversion-based lignin valorization. Here we examined whether multiple tonB-, exbB-, and exbD-like genes in SYK-6 contribute to the outer membrane transport of lignin-derived aromatics. The disruption of tonB2–6 and exbB3 did not reduce the capacity of SYK-6 to convert or grow on lignin-derived aromatics. In contrast, the introduction of the tonB1–exbB1–exbD1–exbD2 operon genes into SYK-6, which could not be disrupted, promoted the conversion of β-O-4-, β-5-, β-1-, β-β-, and 5,5-type dimers and monomers, such as ferulate, vanillate, syringate, and protocatechuate. These results suggest that TonB-dependent uptake involving the tonB1 operon genes is responsible for the outer membrane transport of the above aromatics. Additionally, exbB2/tolQ and exbD3/tolR were suggested to constitute the Tol-Pal system that maintains the outer membrane integrity.


Author(s):  
Federica De Castro ◽  
Erik De Luca ◽  
Chiara Roberta Girelli ◽  
Amilcare Barca ◽  
Alessandro Romano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document