scholarly journals EP-1750: Secondary Dose Calculation: Detecting Systematic Errors in the Treatment Planning System Beam Model

2018 ◽  
Vol 127 ◽  
pp. S938
Author(s):  
J. Wong ◽  
W. Warren ◽  
K. Homann
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Naonori Hu ◽  
Hiroki Tanaka ◽  
Ryo Kakino ◽  
Syuushi Yoshikawa ◽  
Mamoru Miyao ◽  
...  

AbstractBoron neutron capture therapy (BNCT) for the treatment of unresectable, locally advanced, and recurrent carcinoma of the head and neck cancer has been approved by the Japanese government for reimbursement under the national health insurance as of June 2020. A new treatment planning system for clinical BNCT has been developed by Sumitomo Heavy Industries, Ltd. (Sumitomo), NeuCure® Dose Engine. To safely implement this system for clinical use, the simulated neutron flux and gamma ray dose rate inside a water phantom was compared against experimental measurements. Furthermore, to validate and verify the new planning system, the dose distribution inside an anthropomorphic head phantom was compared against a BNCT treatment planning system SERA and an in-house developed Monte Carlo dose calculation program. The simulated results closely matched the experimental results, within 5% for the thermal neutron flux and 10% for the gamma ray dose rate. The dose distribution inside the head phantom closely matched with SERA and the in-house developed dose calculation program, within 3% for the tumour and a difference of 0.3 Gyw for the brain.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
You Zhang ◽  
Tsuicheng Chiu ◽  
Jeffrey Dubas ◽  
Zhen Tian ◽  
Pam Lee ◽  
...  

Abstract Introduction Stereotactic body radiation therapy (SBRT) was found effective in treating laryngeal cancer with only five treatment fractions by a recent clinical trial (NCT01984502, ClinicalTrials.gov). Nevertheless, this trial used the Cyberknife system, which is not widely accessible enough to benefit all patients affected by laryngeal cancer. Our study investigates the feasibility of larynx SBRT treatment planning on a conventional gantry-based LINAC and compares its plan quality with that from the Cyberknife. Materials & methods Ten larynx SBRT cases were originally treated by Cyberknife using fixed cones in our institution, with plans created and optimized using the Monte-Carlo algorithm in the MultiPlan treatment planning system. These cases were retrospectively planned in the Eclipse planning system for a LINAC with the same prescription dose. We used volumetric modulated arc therapy (VMAT) for larynx SBRT planning in Eclipse and incorporated non-coplanar arcs to approach the Cyberknife’s large solid angle delivery space. We used both anisotropic analytical algorithm (AAA) and Acuros XB (AXB) algorithm for dose calculation and compared their accuracy by measurements on an in-house larynx phantom. We compared the LINAC VMAT plans (VMAT-AAA and VMAT-AXB) with the original Cyberknife plans using dosimetric endpoints such as the conformity index, gradient indices (R50, R20), OAR maximum/mean doses, and the monitor units. Results Phantom measurement showed that both the AAA and the AXB algorithms provided adequate dose calculation accuracy (94.7% gamma pass rate on 2%/2 mm criteria for AAA vs. 97.3% for AXB), though AXB provided better accuracy in the air cavity. The LINAC-based VMAT plans achieved similar dosimetric endpoints as the Cyberknife planning, and all plans met the larynx SBRT dosimetric constraints. Cyberknife plans achieved an average conformity index of 1.13, compared to 1.20 of VMAT-AXB and 1.19 of VMAT-AAA. The VMAT plans spared the thyroid gland better with average Dmean of 2.4 Gy (VMAT-AXB) and 2.7 Gy (VMAT-AAA), as compared to 4.3 Gy for Cyberknife plans. The VMAT-AAA plans had a slightly lower contralateral arytenoid Dmax (average: 15.2 Gy) than Cyberknife plans (average: 17.9 Gy) with statistical significance, while the contralateral arytenoid Dmax was similar between VMAT-AXB and Cyberknife plans with no statistically significant difference. Cyberknife plans offered slightly better R50 (average: 5.0) than VMAT-AXB (5.9) and VMAT-AAA (5.7) plans. The VMAT plans substantially reduced the plan MUs to less than 1/3 of the Cyberknife plans, and the differences were statistically significant. The other metrics were similar between VMAT and Cyberknife plans with no statistically significant differences. Conclusions Gantry-based LINACs can achieve similar plan quality to Cyberknife systems. Treatment outcome with both methods remains to be investigated.


Sign in / Sign up

Export Citation Format

Share Document