OC-0646 Automatic tool for head and neck patient referral based on dose prediction with deep learning

2021 ◽  
Vol 161 ◽  
pp. S513-S515
Author(s):  
M. Huet Dastarac ◽  
A.M. Barragán-Montero ◽  
S. Michiels ◽  
S. Teruel Rivas ◽  
E. Sterpin ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 702
Author(s):  
Nalee Kim ◽  
Jaehee Chun ◽  
Jee Suk Chang ◽  
Chang Geol Lee ◽  
Ki Chang Keum ◽  
...  

This study investigated the feasibility of deep learning-based segmentation (DLS) and continual training for adaptive radiotherapy (RT) of head and neck (H&N) cancer. One-hundred patients treated with definitive RT were included. Based on 23 organs-at-risk (OARs) manually segmented in initial planning computed tomography (CT), modified FC-DenseNet was trained for DLS: (i) using data obtained from 60 patients, with 20 matched patients in the test set (DLSm); (ii) using data obtained from 60 identical patients with 20 unmatched patients in the test set (DLSu). Manually contoured OARs in adaptive planning CT for independent 20 patients were provided as test sets. Deformable image registration (DIR) was also performed. All 23 OARs were compared using quantitative measurements, and nine OARs were also evaluated via subjective assessment from 26 observers using the Turing test. DLSm achieved better performance than both DLSu and DIR (mean Dice similarity coefficient; 0.83 vs. 0.80 vs. 0.70), mainly for glandular structures, whose volume significantly reduced during RT. Based on subjective measurements, DLS is often perceived as a human (49.2%). Furthermore, DLSm is preferred over DLSu (67.2%) and DIR (96.7%), with a similar rate of required revision to that of manual segmentation (28.0% vs. 29.7%). In conclusion, DLS was effective and preferred over DIR. Additionally, continual DLS training is required for an effective optimization and robustness in personalized adaptive RT.


2019 ◽  
Vol 104 (3) ◽  
pp. 677-684 ◽  
Author(s):  
Ward van Rooij ◽  
Max Dahele ◽  
Hugo Ribeiro Brandao ◽  
Alexander R. Delaney ◽  
Berend J. Slotman ◽  
...  

2021 ◽  
Vol 66 (18) ◽  
pp. 185012
Author(s):  
Yingtao Fang ◽  
Jiazhou Wang ◽  
Xiaomin Ou ◽  
Hongmei Ying ◽  
Chaosu Hu ◽  
...  

10.2196/26151 ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. e26151
Author(s):  
Stanislav Nikolov ◽  
Sam Blackwell ◽  
Alexei Zverovitch ◽  
Ruheena Mendes ◽  
Michelle Livne ◽  
...  

Background Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain. Objective Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice. Methods The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions. Results We demonstrated the model’s clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model’s generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training. Conclusions Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Benjamin H. Kann ◽  
Sanjay Aneja ◽  
Gokoulakrichenane V. Loganadane ◽  
Jacqueline R. Kelly ◽  
Stephen M. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document