dose prediction
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 105)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
pp. 102339
Author(s):  
Bo Zhan ◽  
Jianghong Xiao ◽  
Chongyang Cao ◽  
Xingchen Peng ◽  
Chen Zu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Lekshmy Srinivas ◽  
Noble Gracious ◽  
Radhakrishnan R. Nair

Tacrolimus, an immunosuppressant used in solid organ transplantation, has a narrow therapeutic index and exhibits inter-individual pharmacokinetic variability. Achieving and maintaining a therapeutic level of the drug by giving appropriate doses is crucial for successful immunosuppression, especially during the initial post-transplant period. We studied the effect of CYP3A5, CYP3A4, and ABCB1 gene polymorphisms on tacrolimus trough concentrations in South Indian renal transplant recipients from Kerala to formulate a genotype-based dosing equation to calculate the required starting daily dose of tacrolimus to be given to each patient to attain optimal initial post-transplant period drug level. We also investigated the effect of these genes on drug-induced adverse effects and rejection episodes and looked into the global distribution of allele frequencies of these polymorphisms. One hundred forty-five renal transplant recipients on a triple immunosuppressive regimen of tacrolimus, mycophenolate mofetil, and steroid were included in this study. Clinical data including tacrolimus daily doses, trough levels (C0) and dose-adjusted tacrolimus trough concentration (C0/D) in blood at three time points (day 6, 6 months, and 1-year post-transplantation), adverse drug effects, rejection episodes, serum creatinine levels, etc., were recorded. The patients were genotyped for CYP3A5*3, CYP3A4*1B, CYP3A4*1G, ABCB1 G2677T, and ABCB1 C3435T polymorphisms by the PCR-RFLP method. We found that CYP3A5*3 polymorphism was the single most strongly associated factor determining the tacrolimus C0/D in blood at all three time points (p < 0.001). Using multiple linear regression, we formulated a simple and easy to compute equation that will help the clinician calculate the starting tacrolimus dose per kg body weight to be administered to a patient to attain optimal initial post-transplant period tacrolimus level. CYP3A5 expressors had an increased chance of rejection than non-expressors (p = 0.028), while non-expressors had an increased risk for new-onset diabetes mellitus after transplantation (NODAT) than expressors (p = 0.018). Genotype-guided initial tacrolimus dosing would help transplant recipients achieve optimal initial post-transplant period tacrolimus levels and thus prevent the adverse effects due to overdose and rejection due to inadequate dose. We observed inter-population differences in allele frequencies of drug metabolizer and transporter genes, emphasizing the importance of formulating population-specific dose prediction models to draw results of clinical relevance.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hui Tang ◽  
Yazheng Chen ◽  
Jialiang Jiang ◽  
Kemin Li ◽  
Jing Zeng ◽  
...  

The prediction of an additional space for the dose sparing of organs at risk (OAR) in radiotherapy is still difficult. In this pursuit, the present study was envisaged to find out the factors affecting the bladder and rectum dosimetry of cervical cancer. Additionally, the relationship between the dose-volume histogram (DVH) parameters and the geometry and plan dose-volume optimization parameters of the bladder/rectum was established to develop the dose prediction models and guide the planning design for lower OARs dose coverage directly. Thirty volume modulated radiation therapy (VMAT) plans from cervical cancer patients were randomly chosen to build the dose prediction models. The target dose coverage was evaluated. Dose prediction models were established by univariate and multiple linear regression among the dosimetric parameters of the bladder/rectum, the geometry parameters (planning target volume (PTV), volume of bladder/rectum, overlap volume of bladder/rectum (OV), and overlapped volume as a percentage of bladder/rectum volume (OP)), and corresponding plan dose-volume optimization parameters of the nonoverlapping structures (the structure of bladder/rectum outside the PTV (NOS)). Finally, the accuracy of the prediction models was evaluated by tracking d = (predicted dose-actual dose)/actual in additional ten VMAT plans. V30, V35, and V40 of the bladder and rectum were found to be multiple linearly correlated with the relevant OP and corresponding dose-volume optimization parameters of NOS (regression R2 > 0.99, P < 0.001 ). The variations of these models were less than 0.5% for bladder and rectum. Percentage of bladder and rectum within the PTV and the dose-volume optimization parameters of NOS could be used to predict the dose quantitatively. The parameters of NOS as a limited condition could be used in the plan optimization instead of limiting the dose and volume of the entire OAR traditionally, which made the plan optimization more unified and convenient and strengthened the plan quality and consistency.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yaoying Liu ◽  
Zhaocai Chen ◽  
Jinyuan Wang ◽  
Xiaoshen Wang ◽  
Baolin Qu ◽  
...  

PurposeThis study focused on predicting 3D dose distribution at high precision and generated the prediction methods for nasopharyngeal carcinoma patients (NPC) treated with Tomotherapy based on the patient-specific gap between organs at risk (OARs) and planning target volumes (PTVs).MethodsA convolutional neural network (CNN) is trained using the CT and contour masks as the input and dose distributions as output. The CNN is based on the “3D Dense-U-Net”, which combines the U-Net and the Dense-Net. To evaluate the model, we retrospectively used 124 NPC patients treated with Tomotherapy, in which 96 and 28 patients were randomly split and used for model training and test, respectively. We performed comparison studies using different training matrix shapes and dimensions for the CNN models, i.e., 128 ×128 ×48 (for Model I), 128 ×128 ×16 (for Model II), and 2D Dense U-Net (for Model III). The performance of these models was quantitatively evaluated using clinically relevant metrics and statistical analysis.ResultsWe found a more considerable height of the training patch size yields a better model outcome. The study calculated the corresponding errors by comparing the predicted dose with the ground truth. The mean deviations from the mean and maximum doses of PTVs and OARs were 2.42 and 2.93%. Error for the maximum dose of right optic nerves in Model I was 4.87 ± 6.88%, compared with 7.9 ± 6.8% in Model II (p=0.08) and 13.85 ± 10.97% in Model III (p&lt;0.01); the Model I performed the best. The gamma passing rates of PTV60 for 3%/3 mm criteria was 83.6 ± 5.2% in Model I, compared with 75.9 ± 5.5% in Model II (p&lt;0.001) and 77.2 ± 7.3% in Model III (p&lt;0.01); the Model I also gave the best outcome. The prediction error of D95 for PTV60 was 0.64 ± 0.68% in Model I, compared with 2.04 ± 1.38% in Model II (p&lt;0.01) and 1.05 ± 0.96% in Model III (p=0.01); the Model I was also the best one.ConclusionsIt is significant to train the dose prediction model by exploiting deep-learning techniques with various clinical logic concepts. Increasing the height (Y direction) of training patch size can improve the dose prediction accuracy of tiny OARs and the whole body. Our dose prediction network model provides a clinically acceptable result and a training strategy for a dose prediction model. It should be helpful to build automatic Tomotherapy planning.


2021 ◽  
Author(s):  
Jianyong Wang ◽  
Junjie Hu ◽  
Ying Song ◽  
Qiang Wang ◽  
Xiaozhi Zhang ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Heidi E. Steiner ◽  
Jason B. Giles ◽  
Hayley Knight Patterson ◽  
Jianglin Feng ◽  
Nihal El Rouby ◽  
...  

Populations used to create warfarin dose prediction algorithms largely lacked participants reporting Hispanic or Latino ethnicity. While previous research suggests nonlinear modeling improves warfarin dose prediction, this research has mainly focused on populations with primarily European ancestry. We compare the accuracy of stable warfarin dose prediction using linear and nonlinear machine learning models in a large cohort enriched for US Latinos and Latin Americans (ULLA). Each model was tested using the same variables as published by the International Warfarin Pharmacogenetics Consortium (IWPC) and using an expanded set of variables including ethnicity and warfarin indication. We utilized a multiple linear regression model and three nonlinear regression models: Bayesian Additive Regression Trees, Multivariate Adaptive Regression Splines, and Support Vector Regression. We compared each model’s ability to predict stable warfarin dose within 20% of actual stable dose, confirming trained models in a 30% testing dataset with 100 rounds of resampling. In all patients (n = 7,030), inclusion of additional predictor variables led to a small but significant improvement in prediction of dose relative to the IWPC algorithm (47.8 versus 46.7% in IWPC, p = 1.43 × 10−15). Nonlinear models using IWPC variables did not significantly improve prediction of dose over the linear IWPC algorithm. In ULLA patients alone (n = 1,734), IWPC performed similarly to all other linear and nonlinear pharmacogenetic algorithms. Our results reinforce the validity of IWPC in a large, ethnically diverse population and suggest that additional variables that capture warfarin dose variability may improve warfarin dose prediction algorithms.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xue Bai ◽  
Jie Zhang ◽  
Binbing Wang ◽  
Shengye Wang ◽  
Yida Xiang ◽  
...  

Abstract Background Neural-network methods have been widely used for the prediction of dose distributions in radiotherapy. However, the prediction accuracy of existing methods may be degraded by the problem of dose imbalance. In this work, a new loss function is proposed to alleviate the dose imbalance and achieve more accurate prediction results. The U-Net architecture was employed to build a prediction model. Our study involved a total of 110 patients with left-breast cancer, who were previously treated by volumetric-modulated arc radiotherapy. The patient dataset was divided into training and test subsets of 100 and 10 cases, respectively. We proposed a novel ‘sharp loss’ function, and a parameter γ was used to adjust the loss properties. The mean square error (MSE) loss and the sharp loss with different γ values were tested and compared using the Wilcoxon signed-rank test. Results The sharp loss achieved superior dose prediction results compared to those of the MSE loss. The best performance with the MSE loss and the sharp loss was obtained when the parameter γ was set to 100. Specifically, the mean absolute difference values for the planning target volume were 318.87 ± 30.23 for the MSE loss versus 144.15 ± 16.27 for the sharp loss with γ = 100 (p < 0.05). The corresponding values for the ipsilateral lung, the heart, the contralateral lung, and the spinal cord were 278.99 ± 51.68 versus 198.75 ± 61.38 (p < 0.05), 216.99 ± 44.13 versus 144.86 ± 43.98 (p < 0.05), 125.96 ± 66.76 versus 111.86 ± 47.19 (p > 0.05), and 194.30 ± 14.51 versus 168.58 ± 25.97 (p < 0.05), respectively. Conclusions The sharp loss function could significantly improve the accuracy of radiotherapy dose prediction.


Cureus ◽  
2021 ◽  
Author(s):  
Zi Ouyang ◽  
Tingliang Zhuang ◽  
Gaurav Marwaha ◽  
Matthew D Kolar ◽  
Peng Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document