Changes in soil organic matter following groundnut–millet cropping at three locations in semi-arid Senegal, West Africa

2003 ◽  
Vol 96 (1-3) ◽  
pp. 37-47 ◽  
Author(s):  
Bo Elberling ◽  
Assize Touré ◽  
Kjeld Rasmussen
2007 ◽  
Vol 94 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Elisée Ouédraogo ◽  
Abdoulaye Mando ◽  
Lijbert Brussaard ◽  
Leo Stroosnijder

Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 549-556 ◽  
Author(s):  
Linyou Lü ◽  
Ruzhen Wang ◽  
Heyong Liu ◽  
Jinfei Yin ◽  
Jiangtao Xiao ◽  
...  

Abstract. Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is known about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of Northern China, a field experiment was initiated in 2011 to mimic the effect of soil coarseness on soil base cations and available micronutrients by mixing soil with different mass proportions of sand: 0 % coarse elements (C0), 10 % (C10), 30 % (C30), 50 % (C50), and 70 % (C70). Soil coarseness significantly increased soil pH in three soil depths of 0–10, 10–20 and 20–40 cm with the highest pH values detected in C50 and C70 treatments. Soil fine particles (smaller than 0.25 mm) significantly decreased with the degree of soil coarseness. Exchangeable Ca and Mg concentrations significantly decreased with soil coarseness degree by up to 29.8 % (in C70) and 47.5 % (in C70), respectively, across three soil depths. Soil available Fe, Mn, and Cu significantly decreased with soil coarseness degree by 62.5, 45.4, and 44.4 %, respectively. As affected by soil coarseness, the increase of soil pH, decrease of soil fine particles (including clay), and decline in soil organic matter were the main driving factors for the decrease of exchangeable base cations (except K) and available micronutrients (except Zn) through soil profile. Developed under soil coarseness, the loss and redistribution of base cations and available micronutrients along soil depths might pose a threat to ecosystem productivity of this sandy grassland.


2012 ◽  
Vol 58 (sup1) ◽  
pp. SS95-SS102 ◽  
Author(s):  
Fernando Peregrina ◽  
Eva Pilar Pérez-Álvarez ◽  
Mikel Colina ◽  
Enrique García-Escudero

2019 ◽  
Vol 10 (05) ◽  
pp. 576-588
Author(s):  
Majed Ibrahim ◽  
Fatima Ghanem ◽  
Afnan Al-Salameen ◽  
Abdallah Al-Fawwaz

2017 ◽  
Vol 63 (No. 5) ◽  
pp. 199-205 ◽  
Author(s):  
Göl Ceyhun

The objectives of this study were to determine the amounts of soil organic matter (SOM) stored within surface soils of high mountain forests and how the SOM amounts are affected by aridity and altitude in semi-arid regions of Central Anatolia. Various climate and altitude conditions of Central Anatolia were included in this study, and SOM amounts were found to be higher in the surface soils of northern Anatolia forests. Our results showed that altitude, climatic factors, and tree species were the most important factors affecting the amount of SOM and other soil properties. SOM, pH, bulk density and available water content differed significantly depending on the altitude and climatic factors in the study areas. As the altitude increased in semi-arid regions, the aridity decreased and the amount of SOM increased.


Sign in / Sign up

Export Citation Format

Share Document