Author(s):  
J Q Yao

Unlike natural synovial joints, which are lubricated with a full fluid film lubrication mechanism, conventional artificial hip joints are lubricated with a mixed lubrication mechanism. Recently, however, a new generation of artificial hip joints employing compliant layers to mimic the compliance of articular cartilage in natural synovial joints have been developed to provide fluid film lubrication in these joints. While satisfactory lubrication can be achieved by employing soft layers, compliant thin layers are susceptible to the debonding between the soft layer and its stiffer substrate and long-term mechanical fatigue failure. Stress analyses for different designs of such joints are therefore important. In the present paper, the circular contact between a rigid sphere and an elastomeric layer bonded on to a rigid substrate has been analysed with a novel semi-analytical approach. The detailed contact parameters (the contact radius, the maximum surface deformation, the contact pressure and the contact stress inside the layer) have been examined for a wide range of aspect ratios (0 ≤ a/ht ≤ 100).


1978 ◽  
Vol 7 (2) ◽  
pp. 73-83 ◽  
Author(s):  
J. O'Kelly ◽  
A. Unsworth ◽  
D. Dowson ◽  
D. A. Hall ◽  
V. Wright

Human hip joints have been studied in a pendulum apparatus and a joint simulator to determine the lubrication mechanisms active in normal physiological activities. Various lubricants have been used to lubricate the hip joints including bovine and human synovial fluid, synovial fluid which has been digested with hyaluronidase or trypsin, silicone fluids of different viscosities, as well as synovial fluid and Ringer's solution which have had their viscosities increased by the addition of hyaluronic acid. The results indicate that under continuous dynamic loading, fluid film lubrication seems to prevail while under static loading, mixed lubrication exists. Increasing the viscosity of the lubricant from very low values (i.e. from 10-3 Pa.s) leads to a reduction in friction, indicating mixed lubrication, until a value of about 0.050 Pa.s was achieved. Further increases seemed to indicate that fluid film lubrication was then present.


Author(s):  
T. Lloyd ◽  
H. McCallion

Developments in high-speed electronic computers have greatly influenced the progress in fluid film lubrication over the past ten years. Static and dynamic oil film parameters have been computed for a wide range of finite geometries, for hydrostatic and hydrodynamic bearings lubricated by compressible and incompressible lubricants. These are either sufficient in themselves or else act as a yardstick against which approximate formulas may be tested. Much use has been made of iterative finite difference schemes, which are particularly well suited to digital computers, and these methods are now more fully understood. Other methods of solution include direct inversion of finite difference matrices and solution by expression of the pressure by some infinite series, a finite number of terms of which give adequate representation. Besides the increase in design data available, there has been substantial progress through a re-examination of the effects of modifying some of the assumptions inherent in most of the available solutions of the Reynolds equation. These include the assumption of constant lubricant viscosity, of rigid surfaces and of laminar flow. Major progress has been witnessed in two fields. The interaction of the lubricant film with elastic boundaries has been shown to be of prime importance in highly loaded contacts such as gears. This has led to the development of the special topic of elastohydrodynamic lubrication theory. The applicability of gas bearings in such growing industries as computers, space vehicles and nuclear reactors has resulted in great activity and progress in this field.


Wear ◽  
1980 ◽  
Vol 63 (1) ◽  
pp. 25-40 ◽  
Author(s):  
J.B. Medley ◽  
A.B. Strong ◽  
R.M. Pilliar ◽  
E.W. Wong

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Toshiharu Kazama ◽  
Yukihito Narita

The mixed and fluid film lubrication characteristics of plain journal bearings with shape changed by wear are numerically examined. A mixed lubrication model that employs both of the asperity-contact mechanism proposed by Greenwood and Williamson and the average flow model proposed by Patir and Cheng includes the effects of adsorbed film and elastic deformation is applied. Considering roughness interaction, the effects of the dent depth and operating conditions on the loci of the journal center, the asperity-contact and hydrodynamic fluid pressures, friction, and leakage are discussed. The following conclusions are drawn. In the mixed lubrication regime, the dent of the bearing noticeably influences the contact and fluid pressures. For smaller dents, the contact pressure and frictional coefficient reduce. In mixed and fluid film lubrication regimes, the pressure and coefficient increase for larger dents. Furthermore, as the dent increases and the Sommerfeld number decreases, the flow rate continuously increases.


2000 ◽  
Vol 122 (4) ◽  
pp. 866-869 ◽  
Author(s):  
Toshiharu Kazama

The optimum design of hydrostatic spherical bearings in fluid film lubrication is examined theoretically. The analytical solutions are derived for both fitted and clearance types of bearings with capillary and orifice restrictors. The optimal size based on the minimum power loss and the maximum stiffness is presented, and the difference between two types of bearings is discussed. [S0742-4787(00)02204-9]


Sign in / Sign up

Export Citation Format

Share Document