The effects of dopamine and its antagonists on directional delay-period activity of prefrontal neurons in monkeys during an oculomotor delayed-response task

2001 ◽  
Vol 41 (2) ◽  
pp. 115-128 ◽  
Author(s):  
Toshiyuki Sawaguchi
2003 ◽  
Vol 90 (5) ◽  
pp. 3441-3454 ◽  
Author(s):  
Albert Compte, ◽  
Christos Constantinidis ◽  
Jesper Tegnér ◽  
Sridhar Raghavachari ◽  
Matthew V. Chafee ◽  
...  

An important question in neuroscience is whether and how temporal patterns and fluctuations in neuronal spike trains contribute to information processing in the cortex. We have addressed this issue in the memory-related circuits of the prefrontal cortex by analyzing spike trains from a database of 229 neurons recorded in the dorsolateral prefrontal cortex of 4 macaque monkeys during the performance of an oculomotor delayed-response task. For each task epoch, we have estimated their power spectrum together with interspike interval histograms and autocorrelograms. We find that 1) the properties of most (about 60%) neurons approximated the characteristics of a Poisson process. For about 25% of cells, with characteristics typical of interneurons, the power spectrum showed a trough at low frequencies (<20 Hz) and the autocorrelogram a dip near zero time lag. About 15% of neurons had a peak at <20 Hz in the power spectrum, associated with the burstiness of the spike train; 2) a small but significant task dependency of spike-train temporal structure: delay responses to preferred locations were characterized not only by elevated firing, but also by suppressed power at low (<20 Hz) frequencies; and 3) the variability of interspike intervals is typically higher during the mnemonic delay period than during the fixation period, regardless of the remembered cue. The high irregularity of neural persistent activity during the delay period is likely to be a characteristic signature of recurrent prefrontal network dynamics underlying working memory.


1998 ◽  
Vol 80 (4) ◽  
pp. 2200-2205 ◽  
Author(s):  
T. Sawaguchi

Sawaguchi, T. Attenuation of delay-period activity of monkey prefrontal neurons by an α2-adrenergic antagonist during an oculomotor delayed-response task. J. Neurophysiol. 80: 2200–2205, 1998. To examine the role of norepinephrine receptors in spatial working memory processes mediated by the prefrontal cortex (PFC), noradrenergic antagonists (yohimbine for α2, prazosin for α1, and propranolol for β receptors) were applied iontophoretically to neurons of the dorsolateral PFC in rhesus monkeys that performed an oculomotor delayed-response (ODR) task. The ODR task was initiated when the monkeys fixated on a central spot on a computer monitor and consisted of fixation (1 s), cue (1 of 4 peripheral cues, 0.5 s), delay (fixation cue only, 4 s), and go periods. In the go period, the subject made a memory-guided saccade to the target location that was cued before the delay period. I focused on 49 neurons that showed directional delay-period activity, i.e., a sustained increase in activity during the delay period, the magnitude of which varied significantly with the memorized target location. Iontophoretic (usually 50 nA) application of yohimbine, but not prazosin or propranolol, significantly decreased the activities of most of the neurons with directional delay-period activity ( n = 41/49, 81%). Furthermore, yohimbine attenuated the sharpness of tuning, examined by a tuning index, of delay-period activity and had a greater attenuating effect on delay-period activity than on background activity. These findings suggest that the activation of α2-adrenergic receptors in the dorsolateral PFC plays a modulatory role in neuronal processes for visuospatial working memory.


NeuroImage ◽  
1998 ◽  
Vol 7 (4) ◽  
pp. S343
Author(s):  
R.A. Berman ◽  
J.A. Sweeney ◽  
K.R. Thulborn ◽  
C.L. Colby

1999 ◽  
Vol 275 (1) ◽  
pp. 9-12 ◽  
Author(s):  
P Stratta ◽  
E Daneluzzo ◽  
P Prosperini ◽  
M Bustini ◽  
M.G Marinangeli ◽  
...  

1985 ◽  
Vol 37 (2b) ◽  
pp. 121-153 ◽  
Author(s):  
Euan M. Macphail ◽  
Steve Reilly

Short-term retention of non-visual information was investigated using three series of hyperstriatal-lesioned and unoperated control pigeons. Neither retention (Experiment 1) nor acquisition (Experiment 3) of go/no-go alternation was disrupted by the lesions. Similarly, Experiments 2 and 5 failed to detect significant disruption of either retention or acquisition of spatial alternation. Increases in the retention intervals used in these tasks reduced accuracy in both groups but did not differently affect hyperstriatal as opposed to control performance. A lasting deficit was, however, obtained in a delayed-response task (Experiment 4), but this deficit, which was independent of retention interval, appeared to be the result, not of a disruption of memory, but of an exaggerated perseverative tendency. Experiment 6 confirmed that all three series of hyperstriatal birds showed disruption of reversals of a spatial discrimination. It is concluded that hyperstriatal lesions do not disrupt memory processes, and the hypothesis that hyperstriatal damage induces perseveration of central sets is discussed.


2014 ◽  
Vol 87 ◽  
pp. 84-89 ◽  
Author(s):  
Takahiro Ishikawa ◽  
Saeka Tomatsu ◽  
Yoshiaki Tsunoda ◽  
Donna S. Hoffman ◽  
Shinji Kakei

Sign in / Sign up

Export Citation Format

Share Document