Application of polyethyleneglycol (PEG)-modified liposomes for oral vaccine: effect of lipid dose on systemic and mucosal immunity

2003 ◽  
Vol 89 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Seiichiro Minato ◽  
Kazunori Iwanaga ◽  
Masawo Kakemi ◽  
Shinji Yamashita ◽  
Naoto Oku
2016 ◽  
Vol 4 (9) ◽  
pp. 1640-1649 ◽  
Author(s):  
Joshua D. Snook ◽  
Charles B. Chesson ◽  
Alex G. Peniche ◽  
Sara M. Dann ◽  
Adriana Paulucci ◽  
...  

To combat mucosal pathogens that cause gastrointestinal (GI) infections, local mucosal immunity is required which is best achieved through oral vaccination.


Author(s):  
Ibrahim Kiliccalan ◽  

This review examines the risk of developing celiac disease (CD) and other autoimmune diseases in individuals receiving the rotavirus (RV) vaccine compared to the normal population. Celiac disease is a malabsorptive, chronic, immune-mediated enteropathy involving the small intestine. The pathogenesis of CD is multifactorial, and mucosal immunity plays an important role in its development. Low mucosal IgA levels significantly increase the risk of developing the disease. Rotavirus is an infectious agent that causes diarrhea, particularly in children aged 0–24 months, and is frequently involved in diarrhea-related deaths in these children. An oral vaccine against RV has been developed. While it is effective on RV infection, it also contributes to increasing mucosal immunity. Studies have indicated that individuals immunized with the RV vaccine are at lower risk of developing CD than unvaccinated individuals. In addition, the mean age for developing CD autoimmunity may be higher in the vaccinated group than in controls receiving placebo. Additional studies that include children immunized with different RV vaccines and unvaccinated children would provide more meaningful results. Although current data suggest a possible association of RV vaccination with a reduced risk of developing CD and other autoimmune diseases, this remains an unanswered question that merits greater international investigation.


Vaccines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 984
Author(s):  
Na Pan ◽  
Bohui Liu ◽  
Xuemei Bao ◽  
Haochi Zhang ◽  
Shouxin Sheng ◽  
...  

Staphylococcus aureus is a leading cause of nosocomial and community-associated infection worldwide; however, there is no licensed vaccine available. S. aureus initiates infection via the mucosa; therefore, a mucosal vaccine is likely to be a promising approach against S. aureus infection. Lactobacilli, a non-pathogenic bacterium, has gained increasing interest as a mucosal delivery vehicle. Hence, we attempted to develop an oral S. aureus vaccine based on lactobacilli to cushion the stress of drug resistance and vaccine needs. In this study, we designed, constructed, and evaluated recombinant Lactobacillus strains synthesizing S. aureus nontoxic mutated α-hemolysins (HlaH35L). The results from animal clinical trials showed that recombinant Lactobacillus can persist for at least 72 h and can stably express heterologous protein in vivo. Recombinant L. plantarum WXD234 (pNZ8148-Hla) could induce robust mucosal immunity in the GALT, as evidenced by a significant increase in IgA and IL-17 production and the strong proliferation of T-lymphocytes derived from Peyer’s patches. WXD234 (pNZ8148-Hla) conferred up to 83% protection against S. aureus pulmonary infection and significantly reduced the abscess size in a S. aureus skin infection model. Of particular interest is the sharp reduction of the protective effect offered by WXD234 (pNZ8148-Hla) vaccination in γδ T cell-deficient or IL-17-deficient mice. In conclusion, for the first time, genetically engineered Lactobacillus WXD234 (pNZ8148-Hla) as an oral vaccine induced superior mucosal immunity, which was associated with high protection against pulmonary and skin infections caused by S. aureus. Taken together, our findings suggest the great potential for a delivery system based on lactobacilli and provide experimental data for the development of mucosal vaccines for S. aureus.


Sign in / Sign up

Export Citation Format

Share Document