mucosal vaccine
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 78)

H-INDEX

46
(FIVE YEARS 5)

Cell Reports ◽  
2022 ◽  
Vol 38 (1) ◽  
pp. 110184
Author(s):  
Paola Brandi ◽  
Laura Conejero ◽  
Francisco J. Cueto ◽  
Sarai Martínez-Cano ◽  
Gillian Dunphy ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Nina Dieu Nhien Tran Nguyen ◽  
Safia Guleed ◽  
Anja Weinreich Olsen ◽  
Frank Follmann ◽  
Jan Pravsgaard Christensen ◽  
...  

The requirement for vaccine-induced tissue-resident immunity for protection against one or repeated infections with Chlamydia trachomatis (C.t.) is still not fully resolved. In this study, our aim was to investigate to which degree tissue-resident Th1/Th17 T cells in the genital tract (GT) could add to the protection mediated by circulating immunity. Out of several mucosal vaccine strategies, a strategy termed SIM (for simultaneous intrauterine and parenteral immunization with CAF01 adjuvanted CTH522), was superior in generating genital tract tissue-resident Th1/Th17 T cell immunity. This led to a faster and stronger local CD4 T cell response post infection, consisting of multifunctional IFNγ/TNFα-producing Th1 T cells and IFNγ/TNFα/IL-17-producing Th17 T cells, and a faster recruitment of innate immune cells. Post infection, SIM animals showed an additional significant reduction in bacterial levels compared to mice having received only a parenteral vaccine. Nevertheless, the parenteral strategy reduced bacterial levels by 75%, and interestingly, post infection, these mice generated their own vaccine-derived genital tract tissue-resident memory Th1/Th17 T cells, which upon a subsequent infection showed as fast an activation in the genital tract, as observed in SIM mice. Furthermore, in contrast to after the first infection, both groups of mice now showed a similar infection-induced boost in local vaginal IgA and IgG titers. Thus, vaccine-induced resident immunity, generated pre-infection, led to an advantage in the response against the first infection, but not the second infection, suggesting that a parenteral vaccine strategy is a suitable vaccine strategy against infections with Chlamydia trachomatis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bereket Dessalegn ◽  
Molalegne Bitew ◽  
Destaw Asfaw ◽  
Esraa Khojaly ◽  
Saddam Mohammed Ibrahim ◽  
...  

Fowl cholera (FC) caused by Pasteurella multocida is among the serious infectious diseases of poultry. Currently, formalin inactivated FC (FI-FC) vaccine is widely used in Ethiopia. However, reports of the disease complaint remain higher despite the use of the vaccine. The aim of this study was to develop and evaluate gamma-irradiated mucosal FC vaccines that can be used nationally. In a vaccination-challenge experiment, the performance of gamma-irradiated P. multocida (at 1 kGy) formulated with Montanide gel/01 PR adjuvant was evaluated at different dose rates (0.5 and 0.3 ml) and routes (intranasal, intraocular, and oral), in comparison with FI-FC vaccine in chicken. Chickens received three doses of the candidate vaccine at 3-week intervals. Sera, and trachea and crop lavage were collected to assess the antibody levels using indirect and sandwich ELISAs, respectively. Challenge exposure was conducted by inoculation at 3.5×109 CFU/ml of P. multocida biotype A intranasally 2 weeks after the last immunization. Repeated measures ANOVA test and Kaplan Meier curve analysis were used to examine for statistical significance of antibody titers and survival analysis, respectively. Sera IgG and secretory IgA titers were significantly raised after second immunization (p=0.0001). Chicken survival analysis showed that intranasal and intraocular administration of the candidate vaccine at the dose of 0.3 ml resulted in 100% protection as compared to intramuscular injection of FI-FC vaccine, which conferred 85% protection (p=0.002). In conclusion, the results of this study showed that gamma-irradiated FC mucosal vaccine is safe and protective, indicating its potential use for immunization of chicken against FC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cynthia Calzas ◽  
Molida Mao ◽  
Mathilde Turpaud ◽  
Quentin Viboud ◽  
Joelle Mettier ◽  
...  

Current inactivated vaccines against influenza A viruses (IAV) mainly induce immune responses against highly variable epitopes across strains and are mostly delivered parenterally, limiting the development of an effective mucosal immunity. In this study, we evaluated the potential of intranasal formulations incorporating conserved IAV epitopes, namely the long alpha helix (LAH) of the stalk domain of hemagglutinin and three tandem repeats of the ectodomain of the matrix protein 2 (3M2e), as universal mucosal anti-IAV vaccines in mice and chickens. The IAV epitopes were grafted to nanorings, a novel platform technology for mucosal vaccination formed by the nucleoprotein (N) of the respiratory syncytial virus, in fusion or not with the C-terminal end of the P97 protein (P97c), a recently identified Toll-like receptor 5 agonist. Fusion of LAH to nanorings boosted the generation of LAH-specific systemic and local antibody responses as well as cellular immunity in mice, whereas the carrier effect of nanorings was less pronounced towards 3M2e. Mice vaccinated with chimeric nanorings bearing IAV epitopes in fusion with P97c presented modest LAH- or M2e-specific IgG titers in serum and were unable to generate a mucosal humoral response. In contrast, N-3M2e or N-LAH nanorings admixed with Montanide™ gel (MG) triggered strong specific humoral responses, composed of serum type 1/type 2 IgG and mucosal IgG and IgA, as well as cellular responses dominated by type 1/type 17 cytokine profiles. All mice vaccinated with the [N-3M2e + N-LAH + MG] formulation survived an H1N1 challenge and the combination of both N-3M2e and N-LAH nanorings with MG enhanced the clinical and/or virological protective potential of the preparation in comparison to individual nanorings. Chickens vaccinated parenterally or mucosally with N-LAH and N-3M2e nanorings admixed with Montanide™ adjuvants developed a specific systemic humoral response, which nonetheless failed to confer protection against heterosubtypic challenge with a highly pathogenic H5N8 strain. Thus, while the combination of N-LAH and N-3M2e nanorings with Montanide™ adjuvants shows promise as a universal mucosal anti-IAV vaccine in the mouse model, further experiments have to be conducted to extend its efficacy to poultry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ming-Shu Hsieh ◽  
Chia-Wei Hsu ◽  
Ling-Ling Tu ◽  
Kit Man Chai ◽  
Li-Lu Yu ◽  
...  

A simple formulation is urgently needed for mucosal vaccine development. We employed formyl peptide receptor-like 1 inhibitory protein (FLIPr), an FcγR antagonist secreted by Staphylococcus aureus, as a vector to target ovalbumin (OVA) to dendritic cells (DCs) via intranasal administration. Our results demonstrate that intranasal administration of recombinant OVA-FLIPr fusion protein (rOVA-FLIPr) alone efficiently delivers OVA to DCs in nasal lymphoid tissue. Subsequently, OVA-specific IgG and IgA antibodies in the circulatory system and IgA antibodies in mucosal tissue were detected. Importantly, activation of OVA-specific CD4+ and CD8+ T cells and induction of a broad-spectrum cytokine secretion profile were detected after intranasal administration of rOVA-FLIPr alone in immunocompetent C57BL/6 mice. Furthermore, we employed immunodeficient AG129 mice as a Zika virus infection model and demonstrated that intranasal administration of recombinant Zika virus envelope protein domain III-FLIPr fusion protein induced protective immune responses against the Zika virus. These results suggest that antigen-FLIPr fusion protein alone via intranasal administration can be applied to mucosal vaccine development.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Leqiang Sun ◽  
Yajie Tang ◽  
Keji Yan ◽  
Huanchun Chen ◽  
Huawei Zhang

AbstractPorcine epidemic diarrhea (PED) caused by the porcine epidemic diarrhea virus (PEDV), is a severe infectious and devastating swine disease that leads to serious economic losses in the swine industry worldwide. An increased number of PED cases caused by variant PEDV have been reported in many countries since 2010. S protein is the main immunogenic protein containing some B-cell epitopes that can induce neutralizing antibodies of PEDV. In this study, the construction, expression and purification of Pseudomonas aeruginosa exotoxin A (PE) without domain III (PEΔIII) as a vector was performed for the delivery of PEDV S-A or S-B. PE(ΔIII) PEDV S-A and PE(ΔIII) PEDV S-B recombinant proteins were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis. The immunogenicity of PEDV S-A and PEDV S-B subunit vaccines were evaluated in mice. The results showed that PEDV-S-B vaccine could not only induce specific humoral and Th1 type-dominant cellular immune responses, but also stimulate PEDV-specific mucosal immune responses in mice. PEDV-S-B subunit vaccine is a novel candidate mucosal vaccine against PEDV infection.


Vaccines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1084
Author(s):  
Fengsai Li ◽  
Xiaona Wang ◽  
Xiaolong Fan ◽  
Ling Sui ◽  
Hailin Zhang ◽  
...  

Porcine epidemic diarrhea (PED), which is caused by the porcine epidemic diarrhea virus (PEDV), has occurred worldwide and poses a serious threat to the pig industry. Intestine is the main function site of PEDV; therefore, it is important to develop an oral mucosal immunity vaccine against this virus infection. Most traditional plasmid delivery vectors use antibiotic genes as a selective marker, easily leading to antibiotic accumulation and gene contamination. In this study, to explore whether the alanine racemase gene (Alr) could be used as a screening marker and develop an efficient oral vaccine against PEDV infection, a recombinant strain was constructed using Lactobacillus casei with Alr deletion (L. casei ΔAlr W56) to deliver the Alr gene and a core-neutralizing epitope (COE) antigen. This recombinant bacterium efficiently induced secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in mice. Compared to the other strains, the recombinant bacteria were able to grow without the addition of D-alanine, revealing that Alr in the plasmid could function normally in defective bacteria. This oral mucosal vaccine would provide a useful strategy to substitute the application of antibiotics in the future and induce efficient immune responses against PEDV infection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hai Li ◽  
Hu Ren ◽  
Yan Zhang ◽  
Lei Cao ◽  
Wenbo Xu

AbstractHuman respiratory syncytial virus (hRSV) infection is a major pediatric health concern worldwide. Despite more than half a century of efforts, there is still no commercially available vaccine. In this study, we constructed and purified the recombinant protein CTA1-DD-RBF composed of a CTA1-DD mucosal adjuvant and prefusion F protein (RBF) using Escherichia coli BL21 cells. We studied the immunogenicity of CTA1-DD-RBF in mice. Intranasal immunization with CTA1-DD-RBF stimulated hRSV F-specific IgG1, IgG2a, sIgA, and neutralizing antibodies as well as T cell immunity without inducing lung immunopathology upon hRSV challenge. Moreover, the protective immunity of CTA1-DD-RBF was superior to that of the RBF protein, as confirmed by the assessment of serum-neutralizing activity and viral clearance after challenge. Compared to formalin-inactivated hRSV (FI-RSV), intranasal immunization with CTA1-DD-RBF induced a Th1 immune response. In summary, intranasal immunization with CTA1-DD-RBF is safe and effective in mice. Therefore, CTA1-DD-RBF represents a potential mucosal vaccine candidate for the prevention of human infection with hRSV.


2021 ◽  
Vol 12 ◽  
Author(s):  
Brandi T. Johnson-Weaver ◽  
Hae Woong Choi ◽  
Hang Yang ◽  
Josh A. Granek ◽  
Cliburn Chan ◽  
...  

Mast cell activators are a novel class of mucosal vaccine adjuvants. The polymeric compound, Compound 48/80 (C48/80), and cationic peptide, Mastoparan 7 (M7) are mast cell activators that provide adjuvant activity when administered by the nasal route. However, small molecule mast cell activators may be a more cost-efficient adjuvant alternative that is easily synthesized with high purity compared to M7 or C48/80. To identify novel mast cell activating compounds that could be evaluated for mucosal vaccine adjuvant activity, we employed high-throughput screening to assess over 55,000 small molecules for mast cell degranulation activity. Fifteen mast cell activating compounds were down-selected to five compounds based on in vitro immune activation activities including cytokine production and cellular cytotoxicity, synthesis feasibility, and selection for functional diversity. These small molecule mast cell activators were evaluated for in vivo adjuvant activity and induction of protective immunity against West Nile Virus infection in BALB/c mice when combined with West Nile Virus envelope domain III (EDIII) protein in a nasal vaccine. We found that three of the five mast cell activators, ST101036, ST048871, and R529877, evoked high levels of EDIII-specific antibody and conferred comparable levels of protection against WNV challenge. The level of protection provided by these small molecule mast cell activators was comparable to the protection evoked by M7 (67%) but markedly higher than the levels seen with mice immunized with EDIII alone (no adjuvant 33%). Thus, novel small molecule mast cell activators identified by high throughput screening are as efficacious as previously described mast cell activators when used as nasal vaccine adjuvants and represent next-generation mast cell activators for evaluation in mucosal vaccine studies.


Sign in / Sign up

Export Citation Format

Share Document