Peptide nanofiber–CaCO3 composite microparticles as adjuvant-free oral vaccine delivery vehicles

2016 ◽  
Vol 4 (9) ◽  
pp. 1640-1649 ◽  
Author(s):  
Joshua D. Snook ◽  
Charles B. Chesson ◽  
Alex G. Peniche ◽  
Sara M. Dann ◽  
Adriana Paulucci ◽  
...  

To combat mucosal pathogens that cause gastrointestinal (GI) infections, local mucosal immunity is required which is best achieved through oral vaccination.

2021 ◽  
Vol 61 (1) ◽  
pp. 517-540 ◽  
Author(s):  
Jacob William Coffey ◽  
Gaurav Das Gaiha ◽  
Giovanni Traverso

Oral vaccination enables pain-free and self-administrable vaccine delivery for rapid mass vaccination during pandemic outbreaks. Furthermore, it elicits systemic and mucosal immune responses. This protects against infection at mucosal surfaces, which may further enhance protection and minimize the spread of disease. The gastrointestinal (GI) tract presents a number of prospective mucosal inductive sites for vaccine targeting, including the oral cavity, stomach, and small intestine. However, currently available oral vaccines are effectively limited to live-attenuated and inactivated vaccines against enteric diseases. The GI tract poses a number of challenges,including degradative processes that digest biologics and mucosal barriers that limit their absorption. This review summarizes the approaches currently under development and future opportunities for oral vaccine delivery to established (intestinal) and relatively new (oral cavity, stomach) mucosal targets. Special consideration is given to recent advances in oral biologic delivery that offer promise as future platforms for the administration of oral vaccines.


2002 ◽  
Vol 22 (2) ◽  
pp. 355-369 ◽  
Author(s):  
Fan Zhou ◽  
Marian R. Neutra

Oral vaccination requires an antigen delivery vehicle to protect the antigen and to enhance translocation of the antigen to the mucosa-associated lymphoid tissue. A variety of antigen delivery vehicles including liposomes have been studied for mucosal immunization. The advantages of liposome formulations are their particulate form and the ability to accommodate immunomodulators and targeting molecules in the same package. Many conventional liposomes are variably unstable in acids, pancreatic juice and bile. Nevertheless, carefully designed liposomes have demonstrated an impressive efficacy in inducing mucosal IgA responses, compared to free antigens and other delivery vehicles. However, liposomes as an oral vaccine vehicle are not yet optimized. To design liposomes that are stable in the harsh intestinal environment and are efficiently taken up by the M cells remains a challenge. This review summarizes recent research efforts using liposomes as an antigen carrier for oral vaccines with practical attention to liposome designs and interaction with the M cells.


Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 41
Author(s):  
Changyong Mu ◽  
Qiwang Zhong ◽  
Yan Meng ◽  
Yong Zhou ◽  
Nan Jiang ◽  
...  

The grass carp reovirus (GCRV) causes severe hemorrhagic disease with high mortality and leads to serious economic losses in the grass carp (Ctenopharyngodon idella) industry in China. Oral vaccine has been proven to be an effective method to provide protection against fish viruses. In this study, a recombinant baculovirus BmNPV-VP35-VP4 was generated to express VP35 and VP4 proteins from GCRV type Ⅱ via Bac-to-Bac baculovirus expression system. The expression of recombinant VP35-VP4 protein (rVP35-VP4) in Bombyx mori embryo cells (BmE) and silkworm pupae was confirmed by Western blotting and immunofluorescence assay (IFA) after infection with BmNPV-VP35-VP4. To vaccinate the grass carp by oral route, the silkworm pupae expressing the rVP35-VP4 proteins were converted into a powder after freeze-drying, added to artificial feed at 5% and fed to grass carp (18 ± 1.5 g) for six weeks, and the immune response and protective efficacy in grass carp after oral vaccination trial was thoroughly investigated. This included blood cell counting and classification, serum antibody titer detection, immune-related gene expression and the relative percent survival rate in immunized grass carp. The results of blood cell counts show that the number of white blood cells in the peripheral blood of immunized grass carp increased significantly from 14 to 28 days post-immunization (dpi). The differential leukocyte count of neutrophils and monocytes were significantly higher than those in the control group at 14 dpi. Additionally, the number of lymphocytes increased significantly and reached a peak at 28 dpi. The serum antibody levels were significantly increased at Day 14 and continued until 42 days post-vaccination. The mRNA expression levels of immune-related genes (IFN-1, TLR22, IL-1β, MHC I, Mx and IgM) were significantly upregulated in liver, spleen, kidney and hindgut after immunization. Four weeks post-immunization, fish were challenged with virulent GCRV by intraperitoneal injection. The results of this challenge study show that orally immunized group exhibited a survival rate of 60% and relative percent survival (RPS) of 56%, whereas the control group had a survival rate of 13% and RPS of 4%. Taken together, our results demonstrate that the silkworm pupae powder containing baculovirus-expressed VP35-VP4 proteins could induce both non-specific and specific immune responses and protect grass carp against GCRV infection, suggesting it could be used as an oral vaccine.


2001 ◽  
Vol 6 (20) ◽  
pp. 1031-1032 ◽  
Author(s):  
Kathryn Senior

2021 ◽  
Author(s):  
Surendra Saraf ◽  
Rudra Narayan Sahoo ◽  
Shailesh Jain ◽  
Subrata Mallick

Abstract Background: Viral infection caused by Hepatitis B is transmitted by permucosal or parenteral exposure and also one of the prime causes of hepatocellular carcinoma and liver cirrhosis. Objectives: M-cell targeting acid-resistant oral vaccine delivery have been formulated for immunization against Hepatitis B infection. Methods: Cationic solid lipid nanoparticles (cSLNs) were prepared utilizing solvent injection technique. Hepatitis B surface antigen (HBsAg) loaded alginate coated cSLNs were anchored with lipopolysaccharide (LPS). SDS-PAGE was performed to evaluate acid degradation protection of prepared formulation. Induction of immunity produced by prepared nanoparticle for Hepatitis B was determined on female Balb/c mice followed by ELISA assays for assessing anti-HBsAg IgG/IgA antibodies in mucosal fluids. Results: Sustained release of HBsAg (60.66 %) has been exhibited from alginate coated cSLNs in comparison to cSLNs without alginate coating (97.72 %) after 48 h. The production of anti-HBs titer in intestinal, salivary and vaginal secretions was 3.41 IU/ml, 3.1 IU/ml and 2.51 IU/ml respectively in comparison to the control group. Integrity of the M-cells has been maintained after binding with SLN, and oral administration delivered the antigen to the desired site of gut. Conclusion: It was found effective in producing antibodies in mucosal immunization against Hepatitis B virus. So, this formulation could be used as a promising alternative preexisting vaccine to prevent Hepatitis B infection.


2010 ◽  
Vol 21 (1) ◽  
pp. 38-45 ◽  
Author(s):  
Vanessa C. Rescia ◽  
Célia S. Takata ◽  
Pedro S. de Araujo ◽  
Maria H. Bueno da Costa

Sign in / Sign up

Export Citation Format

Share Document