Potential of site specific photochemical processing using synchrotron radiation

Author(s):  
Tsuneo Urisu ◽  
Toshio Ibuki ◽  
Yoshiaki Imaizumi ◽  
Masahiro Kawasaki
2006 ◽  
Vol 110 (3) ◽  
pp. 875-883 ◽  
Author(s):  
Mauricio F. Erben ◽  
Mariana Geronés ◽  
Rosana M. Romano ◽  
Carlos O. Della Védova

1990 ◽  
Vol 94 (11) ◽  
pp. 1318-1322 ◽  
Author(s):  
Rolf Jung ◽  
Ralf Staub ◽  
Hermann Baiter ◽  
Georg Reiser ◽  
Wieland Habenicht ◽  
...  

1995 ◽  
Author(s):  
R.A. Rosenberg ◽  
J.K. Simons ◽  
S.P. Frigo

1990 ◽  
Vol 41 (6) ◽  
pp. 814-818 ◽  
Author(s):  
Wieland Habenicht ◽  
Hermann Baiter ◽  
Klaus Müller-Dethlefs ◽  
Edward W Schlag

Author(s):  
Richard D. Powell ◽  
James F. Hainfeld ◽  
Carol M. R. Halsey ◽  
David L. Spector ◽  
Shelley Kaurin ◽  
...  

Two new types of covalently linked, site-specific immunoprobes have been prepared using metal cluster labels, and used to stain components of cells. Combined fluorescein and 1.4 nm “Nanogold” labels were prepared by using the fluorescein-conjugated tris (aryl) phosphine ligand and the amino-substituted ligand in the synthesis of the Nanogold cluster. This cluster label was activated by reaction with a 60-fold excess of (sulfo-Succinimidyl-4-N-maleiniido-cyclohexane-l-carboxylate (sulfo-SMCC) at pH 7.5, separated from excess cross-linking reagent by gel filtration, and mixed in ten-fold excess with Goat Fab’ fragments against mouse IgG (obtained by reduction of F(ab’)2 fragments with 50 mM mercaptoethylamine hydrochloride). Labeled Fab’ fragments were isolated by gel filtration HPLC (Superose-12, Pharmacia). A combined Nanogold and Texas Red label was also prepared, using a Nanogold cluster derivatized with both and its protected analog: the cluster was reacted with an eight-fold excess of Texas Red sulfonyl chloride at pH 9.0, separated from excess Texas Red by gel filtration, then deprotected with HC1 in methanol to yield the amino-substituted label.


Author(s):  
B. Jouffrey ◽  
D. Dorignac ◽  
A. Bourret

Since the early works on GP zones and the model independently proposed by Preston and Guinier on the first steps of precipitation in supersaturated solid solution of aluminium containing a few percent of copper, many works have been performed to understand the structure of different stages in the sequence of precipitation.The scheme which is generally admitted can be drawn from a work by Phillips.In their original model Guinier and Preston analysed a GP zone as composed of a single (100) copperrich plane surrounded by aluminum atomic planes with a slightly shorter distance from the original plane than in the solid solution.From X-ray measurements it has also been shown that GP1 zones were not only copper monolayer zones. They could be up to a few atomic planes thick. Different models were proposed by Guinier, Gerold, Toman. Using synchrotron radiation, proposals have been recently made.


2020 ◽  
Vol 64 (1) ◽  
pp. 135-153 ◽  
Author(s):  
Lauren Elizabeth Smith ◽  
Adelina Rogowska-Wrzesinska

Abstract Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.


Sign in / Sign up

Export Citation Format

Share Document