The challenge of detecting modifications on proteins

2020 ◽  
Vol 64 (1) ◽  
pp. 135-153 ◽  
Author(s):  
Lauren Elizabeth Smith ◽  
Adelina Rogowska-Wrzesinska

Abstract Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.

2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Yun Wei ◽  
Wan-Jie Yang ◽  
Qi-Jun Wang ◽  
Peng-Cheng Lin ◽  
Jian-Yuan Zhao ◽  
...  

Abstract Background Lysine post-translational modifications are important regulators of protein function. Proteomic and biochemical approaches have resulted in identification of several lysine modifications, including acetylation, crotonylation, and succinylation. Here, we developed an approach for surveying amide-bonded lysine modifications in the proteome of human tissues/cells based on the observation that many lysine modifications are amide-bonded and that the Salmonella enterica deacetylase, CobB, is an amidase. Results After the proteome of human tissues/cells was denatured and the non-covalently bonded metabolites were removed by acetone washes, and the amide-bonded modifiers were released by CobB and analyzed using liquid- and/or gas chromatography/mass spectrometry metabolomic analysis. This protocol, which required 3–4 days for completion, was used to qualitatively identify more than 40 documented and unreported lysine modifications from the human proteome and to quantitatively analyze dynamic changes in targeted amide-bonded lysine modifications. Conclusions We developed a method that was capable of monitoring and quantifying amide-bonded lysine modifications in cells of different origins.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Simone Sidoli ◽  
Mariana Lopes ◽  
Peder J. Lund ◽  
Naomi Goldman ◽  
Maria Fasolino ◽  
...  

Abstract Histone post-translational modifications (PTMs) contribute to chromatin accessibility due to their chemical properties and their ability to recruit enzymes responsible for DNA readout and chromatin remodeling. To date, more than 400 different histone PTMs and thousands of combinations of PTMs have been identified, the vast majority with still unknown biological function. Identification and quantification of histone PTMs has become routine in mass spectrometry (MS) but, since raising antibodies for each PTM in a study can be prohibitive, lots of potential is lost from MS datasets when uncharacterized PTMs are found to be significantly regulated. We developed an assay that uses metabolic labeling and MS to associate chromatin accessibility with histone PTMs and their combinations. The labeling is achieved by spiking in the cell media a 5x concentration of stable isotope labeled arginine and allow cells to grow for at least one cell cycle. We quantified the labeling incorporation of about 200 histone peptides with a proteomics workflow, and we confirmed that peptides carrying PTMs with extensively characterized roles in active transcription or gene silencing were in highly or poorly labeled forms, respectively. Data were further validated using next-generation sequencing to assess the transcription rate of chromatin regions modified with five selected PTMs. Furthermore, we quantified the labeling rate of peptides carrying co-existing PTMs, proving that this method is suitable for combinatorial PTMs. We focus on the abundant bivalent mark H3K27me3K36me2, showing that H3K27me3 dominantly represses histone swapping rate even in the presence of the more permissive PTM H3K36me2. Together, we envision this method will help to generate hypotheses regarding histone PTM functions and, potentially, elucidate the role of combinatorial histone codes.


2021 ◽  
Author(s):  
Tongyao Wei ◽  
Jiamei Liu ◽  
Yi Tan ◽  
Ruohan Wei ◽  
Jinzheng Wang ◽  
...  

To answer how protein post-translational modifications (PTMs) affect protein function, conformation, sta-bility, localization and interaction with binders remains important in the biological study. However, the re-lated study has been dramatically hindered by the difficulty in obtaining homogenous proteins with site-specific PTMs of interest. Herein, we introduce a protein semi-synthesis strategy via salicylaldehyde ester-mediated chemical ligations (Ser/Thr ligation and Cys/Pen ligation). This methodology has enabled us to generate Lys (2/6/7/11) tetra-acetylated HMGB1 (high-mobility group box 1) protein, a 25 kDa proin-flammatory protein, in high purity. Further studies revealed that the tetra-acetylation may represent a regu-latory switch to control the HMGB1 signaling pathway by abolishing its interaction with lipopolysaccha-ride (LPS) and accelerating its degradation, consequently preventing cells from pyroptosis and lethality upon infectious injury.


2018 ◽  
Author(s):  
David G. Christensen ◽  
Jesse G. Meyer ◽  
Jackson T. Baumgartner ◽  
Alexandria K. D’Souza ◽  
William C. Nelson ◽  
...  

AbstractPost-translational modifications, such as Nε-lysine acetylation, regulate protein function. Nε-lysine acetylation can occur either non-enzymatically or enzymatically. The non-enzymatic mechanism uses acetyl phosphate (AcP) or acetyl coenzyme A (AcCoA) as acetyl donors to modify an Nε-lysine residue of a protein. The enzymatic mechanism uses Nε-lysine acetyltransferases (KATs) to specifically transfer an acetyl group from AcCoA to Nε-lysine residues on proteins. To date, only one KAT (YfiQ, also known as Pka and PatZ) has been identified inE. coli. Here, we demonstrate the existence of 4 additionalE. coliKATs: RimI, YiaC, YjaB, and PhnO. In a genetic background devoid of all known acetylation mechanisms (most notably AcP and YfiQ) and one deacetylase (CobB), overexpression of these putative KATs elicited unique patterns of protein acetylation. We mutated key active site residues and found that most of them eliminated enzymatic acetylation activity. We used mass spectrometry to identify and quantify the specificity of YfiQ and the four novel KATs. Surprisingly, our analysis revealed a high degree of substrate specificity. The overlap between KAT-dependent and AcP-dependent acetylation was extremely limited, supporting the hypothesis that these two acetylation mechanisms play distinct roles in the post-translational modification of bacterial proteins. We further showed that these novel KATs are conserved across broad swaths of bacterial phylogeny. Finally, we determined that one of the novel KATs (YiaC) and the known KAT (YfiQ) can negatively regulate bacterial migration. Together, these results emphasize distinct and specific non-enzymatic and enzymatic protein acetylation mechanisms present in bacteria.ImportanceNε-lysine acetylation is one of the most abundant and important post-translational modifications across all domains of life. One of the best-studied effects of acetylation occurs in eukaryotes, where acetylation of histone tails activates gene transcription. Although bacteria do not have true histones, Nε-lysine acetylation is prevalent; however, the role of these modifications is mostly unknown. We constructed anE. colistrain that lacked both known acetylation mechanisms to identify four new Nε-lysine acetyltransferases (RimI, YiaC, YjaB, and PhnO). We used mass spectrometry to determine the substrate specificity of these acetyltransferases. Structural analysis of selected substrate proteins revealed site-specific preferences for enzymatic acetylation that had little overlap with the preferences of the previously reported acetyl-phosphate non-enzymatic acetylation mechanism. Finally, YiaC and YfiQ appear to regulate flagellar-based motility, a phenotype critical for pathogenesis of many organisms. These acetyltransferases are highly conserved and reveal deeper and more complex roles for bacterial post-translational modification.


COSMOS ◽  
2013 ◽  
Vol 09 (01) ◽  
pp. 19-27
Author(s):  
MADHUBRATA GHOSH ◽  
GANESH S. ANAND

A major goal of molecular biology is to correlate molecular structure with function. Since most enzymes and biological catalysts are proteins, the focus for correlating 'form' with 'function' has been entirely on protein macromolecular structure. It is obvious that any understanding of protein function must come through an understanding protein dynamics. Furthermore, all of the regulatory reactions are through changes in dynamics brought about by post-translational modifications, the most important of which is phosphorylation. This review highlights the important role of covalent phosphorylation and noncovalent phosphates in regulating allosteric effects and function through a study of protein dynamics. Mass spectrometry is a relatively new and increasingly important tool for describing protein dynamics. All examples described in this review have been studied by amide hydrogen/deuterium exchange mass spectrometry.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Navratan Bagwan ◽  
Henrik H. El Ali ◽  
Alicia Lundby

AbstractPost translational modifications (PTMs) are covalent modifications of proteins that can range from small chemical modifications to addition of entire proteins. PTMs contribute to regulation of protein function and thereby greatly increase the functional diversity of the proteome. In the heart, a few well-studied PTMs, such as phosphorylation and glycosylation, are known to play essential roles for cardiac function. Yet, only a fraction of the ~ 300 known PTMs have been studied in a cardiac context. Here we investigated the proteome-wide map of PTMs present in human hearts by utilizing high-resolution mass spectrometry measurements and a suite of PTM identification algorithms. Our approach led to identification of more than 150 different PTMs across three of the chambers in human hearts. This finding underscores that decoration of cardiac proteins by PTMs is much more diverse than hitherto appreciated and provides insights in cardiac protein PTMs not yet studied. The results presented serve as a catalogue of which PTMs are present in human hearts and outlines the particular protein and the specific amino acid modified, and thereby provides a detail-rich resource for exploring protein modifications in human hearts beyond the most studied PTMs.


2018 ◽  
Vol 5 (7) ◽  
pp. 172425 ◽  
Author(s):  
Shixiang Yao ◽  
Chibuike C. Udenigwe

Post-translational modifications (PTMs) often occur in proteins and play a regulatory role in protein function. There is an increasing interest in the bioactivity of food protein-derived peptides, but the occurrence of PTMs and their influence on food peptide structure and behaviour remain largely unknown. In this study, the shotgun-based peptidomics strategy was used to identify the occurrence of PTMs in peptides generated from potato protein hydrolysis using digestive proteases. Diverse PTMs were found in the potato peptides, including acetylation of lysine, N-terminal of proteins and peptides, C-terminal amidation, de-amidation of asparagine/glutamine, methylation and trimethylation, methionine oxidation and N-terminal pyro-glutamyl residue formation. The modifications may have been formed naturally or as a result of chemical reactions during isolation and enzymatic processing of the potato proteins. Most of the PTMs were calculated to decrease the isoelectric point and increase molecular hydrophobicity of the peptides, which will influence their bioactivity while also potentially altering their solubility in an aqueous environment. This is the first study to unravel that food-derived peptides can be widely modified by PTMs associated with notable changes in peptide chemical properties. The findings have broader implications on the bioavailability, biomolecular interactions and biological activities of food peptides.


2017 ◽  
Vol 199 (16) ◽  
Author(s):  
Valerie J. Carabetta ◽  
Ileana M. Cristea

ABSTRACT N ε-Lysine acetylation is now recognized as an abundant posttranslational modification (PTM) that influences many essential biological pathways. Advancements in mass spectrometry-based proteomics have led to the discovery that bacteria contain hundreds of acetylated proteins, contrary to the prior notion of acetylation events being rare in bacteria. Although the mechanisms that regulate protein acetylation are still not fully defined, it is understood that this modification is finely tuned via both enzymatic and nonenzymatic mechanisms. The opposing actions of Gcn5-related N-acetyltransferases (GNATs) and deacetylases, including sirtuins, provide the enzymatic control of lysine acetylation. A nonenzymatic mechanism of acetylation has also been demonstrated and proven to be prominent in bacteria, as well as in mitochondria. The functional consequences of the vast majority of the identified acetylation sites remain unknown. From studies in mammalian systems, acetylation of critical lysine residues was shown to impact protein function by altering its structure, subcellular localization, and interactions. It is becoming apparent that the same diversity of functions can be found in bacteria. Here, we review current knowledge of the mechanisms and the functional consequences of acetylation in bacteria. Additionally, we discuss the methods available for detecting acetylation sites, including quantitative mass spectrometry-based methods, which promise to promote this field of research. We conclude with possible future directions and broader implications of the study of protein acetylation in bacteria.


2020 ◽  
Vol 477 (7) ◽  
pp. 1219-1225 ◽  
Author(s):  
Nikolai N. Sluchanko

Many major protein–protein interaction networks are maintained by ‘hub’ proteins with multiple binding partners, where interactions are often facilitated by intrinsically disordered protein regions that undergo post-translational modifications, such as phosphorylation. Phosphorylation can directly affect protein function and control recognition by proteins that ‘read’ the phosphorylation code, re-wiring the interactome. The eukaryotic 14-3-3 proteins recognizing multiple phosphoproteins nicely exemplify these concepts. Although recent studies established the biochemical and structural basis for the interaction of the 14-3-3 dimers with several phosphorylated clients, understanding their assembly with partners phosphorylated at multiple sites represents a challenge. Suboptimal sequence context around the phosphorylated residue may reduce binding affinity, resulting in quantitative differences for distinct phosphorylation sites, making hierarchy and priority in their binding rather uncertain. Recently, Stevers et al. [Biochemical Journal (2017) 474: 1273–1287] undertook a remarkable attempt to untangle the mechanism of 14-3-3 dimer binding to leucine-rich repeat kinase 2 (LRRK2) that contains multiple candidate 14-3-3-binding sites and is mutated in Parkinson's disease. By using the protein-peptide binding approach, the authors systematically analyzed affinities for a set of LRRK2 phosphopeptides, alone or in combination, to a 14-3-3 protein and determined crystal structures for 14-3-3 complexes with selected phosphopeptides. This study addresses a long-standing question in the 14-3-3 biology, unearthing a range of important details that are relevant for understanding binding mechanisms of other polyvalent proteins.


Sign in / Sign up

Export Citation Format

Share Document