Polyoma virus middle t-antigen: growth factor receptor mimic

Author(s):  
Philippa R. Nicholson ◽  
Stephen M. Dilworth
1983 ◽  
Vol 3 (8) ◽  
pp. 1451-1459 ◽  
Author(s):  
Claude Asselin ◽  
Celine Gelinas ◽  
Marcel Bastin

A modified polyoma virus genome which can encode the middle T protein but not the large or small T proteins transforms rat cells in culture with an efficiency about 20% that of the wild-type genome. Although middle T-transformed cells grow as tumors when transplanted into nude mice or syngeneic rats, the middle T gene alone is totally inactive when used in a more stringent and rigorous assay for tumorigenicity such as the injection of DNA into newborn rats. Thus, functions other than those expressed by middle T antigen are required for the elaboration of all the properties associated with tumorigenesis. To assess whether a complementary function could be exerted by the large or the small T antigen, we constructed plasmids containing two modified early regions which independently encoded middle T and one of the two other proteins. Both recombinants were tumorigenic in newborn rats. Cell lines derived by transfer of these plasmids under no special selective conditions did not acquire the property of growth in low-serum medium but exhibited the same tumorigenic properties as wild-type polyoma DNA-transformed cells. Furthermore, a recombinant which encoded the middle and small T antigens, but not the large T antigen, was tumorigenic in newborn rats. Although the small T antigen provides a complementary function for tumorigenicity, it cannot complement the middle T antigen for an efficient induction of transformation of cultured cells. This suggests that the complementary function exerted by the small T antigen is different from that of the N-terminal fragment of the large T protein.


1982 ◽  
Vol 2 (10) ◽  
pp. 1187-1198 ◽  
Author(s):  
B S Schaffhausen ◽  
H Dorai ◽  
G Arakere ◽  
T L Benjamin

Middle T antigen of polyoma virus is associated principally with the plasma membrane. Comparison of the trypsin sensitivity of middle T in intact cells and "inside out" membrane preparations showed that middle T is oriented towards the inside of the cell. This was confirmed by labeling of middle T in permeabilized cells, but not in intact cells, using [gamma-32P]ATP. Middle T molecules active in the in vitro kinase reaction could be differentiated from the bulk (metabolically labeled) middle T based on resistance to trypsin treatment. The active fraction also behaved differently from the bulk when cell frameworks were prepared with Triton-containing buffers; whereas the bulk middle T was evenly distributed in the soluble and cell framework fractions, the kinase-active forms were largely associated with the framework. Middle T molecules labeled in vivo with 32PO4 were found largely in the framework fraction, like the molecules that show kinase activity in vitro. Experiments with ATP affinity reagents 8-azido-ATP and 2,3-dialdehyde ATP have failed to label the middle T antigen. However, 2,3-dialdehyde ATP could be used to inhibit the kinase reaction. This raises the question of whether middle T antigen possesses intrinsic kinase activity or, rather, associates with a cellular tyrosine kinase.


1989 ◽  
Vol 17 (4) ◽  
pp. 1427-1443 ◽  
Author(s):  
Jitka Forstová ◽  
Nina Krauzewicz ◽  
Beverly E. Griffin

1992 ◽  
Vol 199 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Ellen Reihsaus ◽  
Stefan Kraiss ◽  
Angelika Barnekow ◽  
Mathias Montenarh

Sign in / Sign up

Export Citation Format

Share Document