scholarly journals Comparison of next Generation Sequencing Technologies for the Comprehensive Assessment of Full-Length Hepatitis C Viral Genomes

2016 ◽  
Vol 64 (2) ◽  
pp. S415 ◽  
Author(s):  
E. Thomson ◽  
C. Ip ◽  
A. Badhan ◽  
M. Christiansen ◽  
W. Adamson ◽  
...  
2015 ◽  
Vol 47 (7) ◽  
pp. 608-612 ◽  
Author(s):  
Barbara Bartolini ◽  
Emanuela Giombini ◽  
Isabella Abbate ◽  
Marina Selleri ◽  
Gabriella Rozera ◽  
...  

2008 ◽  
Vol 18 (10) ◽  
pp. 1638-1642 ◽  
Author(s):  
D. R. Smith ◽  
A. R. Quinlan ◽  
H. E. Peckham ◽  
K. Makowsky ◽  
W. Tao ◽  
...  

2011 ◽  
Vol 16 (11-12) ◽  
pp. 512-519 ◽  
Author(s):  
Peter M. Woollard ◽  
Nalini A.L. Mehta ◽  
Jessica J. Vamathevan ◽  
Stephanie Van Horn ◽  
Bhushan K. Bonde ◽  
...  

Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 429 ◽  
Author(s):  
Daniela Barros-Silva ◽  
C. Marques ◽  
Rui Henrique ◽  
Carmen Jerónimo

DNA methylation is an epigenetic modification that plays a pivotal role in regulating gene expression and, consequently, influences a wide variety of biological processes and diseases. The advances in next-generation sequencing technologies allow for genome-wide profiling of methyl marks both at a single-nucleotide and at a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, coverage, and bioinformatics analysis. Thus, the selection of the most feasible method according with the project’s purpose requires in-depth knowledge of those techniques. Currently, high-throughput sequencing techniques are intensively used in epigenomics profiling, which ultimately aims to find novel biomarkers for detection, diagnosis prognosis, and prediction of response to therapy, as well as to discover new targets for personalized treatments. Here, we present, in brief, a portrayal of next-generation sequencing methodologies’ evolution for profiling DNA methylation, highlighting its potential for translational medicine and presenting significant findings in several diseases.


2021 ◽  
Author(s):  
Ahmed S Fahad ◽  
Cheng Yu Chung ◽  
Sheila N. Lopez Acevedo ◽  
Nicoleen Boyle ◽  
Bharat Madan ◽  
...  

Functional analyses of the T cell receptor (TCR) landscape can reveal critical information about protection from disease and molecular responses to vaccines. However, it has proven difficult to combine advanced next-generation sequencing technologies with methods to decode the peptide-major histocompatibility complex (pMHC) specificity of individual TCRs. Here we developed a new high-throughput approach to enable repertoire-scale functional evaluations of natively paired TCRs. In particular, we leveraged the immortalized nature of physically linked TCRα:β amplicon libraries to analyze binding against multiple recombinant pMHCs on a repertoire scale. To exemplify the utility of this approach, we also performed affinity-based functional mapping in conjunction with quantitative next-generation sequencing to track antigen- specific TCRs. These data successfully validated a new immortalization and screening platform to facilitate detailed molecular analyses of human TCRs against diverse antigen targets associated with health, vaccination, or disease.


Sign in / Sign up

Export Citation Format

Share Document