Salicylic acid produced by isochorismate synthase and isochorismate pyruvate lyase in various parts of constitutive salicylic acid producing tobacco plants

Plant Science ◽  
2001 ◽  
Vol 161 (5) ◽  
pp. 911-915 ◽  
Author(s):  
Laurentius H Nugroho ◽  
Marianne C Verberne ◽  
Robert Verpoorte
2001 ◽  
Vol 125 (1) ◽  
pp. 318-328 ◽  
Author(s):  
Julie Chong ◽  
Marie-Agnès Pierrel ◽  
Rossitza Atanassova ◽  
Danièle Werck-Reichhart ◽  
Bernard Fritig ◽  
...  

1999 ◽  
Vol 12 (8) ◽  
pp. 655-662 ◽  
Author(s):  
Laurent Costet ◽  
Sylvain Cordelier ◽  
Stéphan Dorey ◽  
Fabienne Baillieul ◽  
Bernard Fritig ◽  
...  

In tobacco plants reacting hypersensitively to pathogen infection, localized acquired resistance (LAR) is induced in a sharp zone surrounding hypersensitive response (HR) lesions. Using a fungal glycoprotein inducing HR and LAR when infiltrated at 50 nM into tobacco leaves, we have shown previously that a plant signal(s) is released by HR cells and diffuses to induce LAR. Here we address two questions: does LAR occur when HR is not induced, and is salicylic acid the (or one of the) mobile LAR signal? We found that application to tobacco leaves of 0.25 nM glycoprotein triggered defense responses without HR and without an H2O2 burst. The analyzed responses include changes in expression of O-methyltransferase (OMT), 3-hydroxy-3-methylglutarylCoA reductase, pathogenesis-related (PR) proteins, and changes in levels of the signal salicylic acid. No defense responses and no increased resistance to tobacco mosaic virus infection were found beyond the elicitor-infiltrated tissue, providing strong evidence that there is no LAR without HR. Treatments of NahG tobacco leaves with 50 nM elicitor induced the HR and, in the sharp zone surrounding the HR lesion, a strong activation of OMT and of basic PR proteins, but not of acidic PR-1 proteins. This indicates that a signal different from salicylic acid is diffusing.


2017 ◽  
Vol 30 (8) ◽  
pp. 620-630 ◽  
Author(s):  
Jinyun Li ◽  
Zhiqian Pang ◽  
Pankaj Trivedi ◽  
Xiaofeng Zhou ◽  
Xiaobao Ying ◽  
...  

Pathogens from the fastidious, phloem-restricted ‘Candidatus Liberibacter’ species cause the devastating Huanglongbing (HLB) disease in citrus worldwide and cause diseases on many solanaceous crops and plants in the Apiaceae family. However, little is known about the pathogenic mechanisms due to the difficulty in culturing the corresponding ‘Ca. Liberibacter’ species. Here, we report that the citrus HLB pathogen ‘Ca. L. asiaticus’ uses an active salicylate hydroxylase SahA to degrade salicylic acid (SA) and suppress plant defenses. Purified SahA protein displays strong enzymatic activity to degrade SA and its derivatives. Overexpression of SahA in transgenic tobacco plants abolishes SA accumulation and hypersensitive response (HR) induced by nonhost pathogen infection. By degrading SA, ‘Ca. L. asiaticus’ not only enhances the susceptibility of citrus plants to both nonpathogenic and pathogenic Xanthomonas citri but also attenuates the responses of citrus plants to exogenous SA. In addition, foliar spraying of 2,1,3-benzothiadiazole and 2,6-dichloroisonicotinic acid, SA functional analogs not degradable by SahA, displays comparable (and even better) effectiveness with SA in suppressing ‘Ca. L. asiaticus’ population growth and HLB disease progression in infected citrus trees under field conditions. This study demonstrates one or more pathogens suppress plant defenses by degrading SA and establish clues for developing novel SA derivatives-based management approaches to control the associated plant diseases.


2006 ◽  
Vol 47 (8) ◽  
pp. 1169-1174 ◽  
Author(s):  
Frank Waller ◽  
Axel Müller ◽  
Kwi-Mi Chung ◽  
Yun-Kiam Yap ◽  
Kimiyo Nakamura ◽  
...  

Plant Science ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 575-581 ◽  
Author(s):  
Laurentius H. Nugroho ◽  
Anja M.G. Peltenburg-Looman ◽  
Helene de Vos ◽  
Marianne C. Verberne ◽  
Robert Verpoorte

2017 ◽  
Vol 91 (19) ◽  
Author(s):  
Eun Jin Jeon ◽  
Kazuki Tadamura ◽  
Taiki Murakami ◽  
Jun-ichi Inaba ◽  
Bo Min Kim ◽  
...  

ABSTRACT Primary infection of a plant with a pathogen that causes high accumulation of salicylic acid in the plant typically via a hypersensitive response confers enhanced resistance against secondary infection with a broad spectrum of pathogens, including viruses. This phenomenon is called systemic acquired resistance (SAR), which is a plant priming for adaption to repeated biotic stress. However, the molecular mechanisms of SAR-mediated enhanced inhibition, especially of virus infection, remain unclear. Here, we show that SAR against cucumber mosaic virus (CMV) in tobacco plants (Nicotiana tabacum) involves a calmodulin-like protein, rgs-CaM. We previously reported the antiviral function of rgs-CaM, which binds to and directs degradation of viral RNA silencing suppressors (RSSs), including CMV 2b, via autophagy. We found that rgs-CaM-mediated immunity is ineffective against CMV infection in normally growing tobacco plants but is activated as a result of SAR induction via salicylic acid signaling. We then analyzed the effect of overexpression of rgs-CaM on salicylic acid signaling. Overexpressed and ectopically expressed rgs-CaM induced defense reactions, including cell death, generation of reactive oxygen species, and salicylic acid signaling. Further analysis using a combination of the salicylic acid analogue benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and the Ca2+ ionophore A23187 revealed that rgs-CaM functions as an immune receptor that induces salicylic acid signaling by simultaneously perceiving both viral RSS and Ca2+ influx as infection cues, implying its autoactivation. Thus, secondary infection of SAR-induced tobacco plants with CMV seems to be effectively inhibited through 2b recognition and degradation by rgs-CaM, leading to reinforcement of antiviral RNA silencing and other salicylic acid-mediated antiviral responses. IMPORTANCE Even without an acquired immune system like that in vertebrates, plants show enhanced whole-plant resistance against secondary infection with pathogens; this so-called systemic acquired resistance (SAR) has been known for more than half a century and continues to be extensively studied. SAR-induced plants strongly and rapidly express a number of antibiotics and pathogenesis-related proteins targeted against secondary infection, which can account for enhanced resistance against bacterial and fungal pathogens but are not thought to control viral infection. This study showed that enhanced resistance against cucumber mosaic virus is caused by a tobacco calmodulin-like protein, rgs-CaM, which detects and counteracts the major viral virulence factor (RNA silencing suppressor) after SAR induction. rgs-CaM-mediated SAR illustrates the growth versus defense trade-off in plants, as it targets the major virulence factor only under specific biotic stress conditions, thus avoiding the cost of constitutive activation while reducing the damage from virus infection.


2014 ◽  
Vol 79 (2) ◽  
pp. 206-219 ◽  
Author(s):  
Mitzi Villajuana-Bonequi ◽  
Nabil Elrouby ◽  
Karl Nordström ◽  
Thomas Griebel ◽  
Andreas Bachmair ◽  
...  

1998 ◽  
Vol 11 (8) ◽  
pp. 795-800 ◽  
Author(s):  
Michael G. Willits ◽  
John A. Ryals

Salicylic acid (SA) has been proposed as the systemic signal for the induction of systemic acquired resistance (SAR). It has been suggested that SA is synthesized at the site of pathogen-induced necrosis and is translocated to induce SAR in uninfected leaves. Grafting studies between wild-type tobacco plants and plants that are unable to accumulate significant amounts of SA have shown that the large increase in SA accumulation seen in inoculated leaves is not necessary for SAR induction, suggesting that SA is not the primary systemic signal. However, these studies have not addressed whether decreased levels of SA accumulation in inoculated leaves are sufficient to fully induce SAR. In this study, we have determined the relationship between free SA levels in the inoculated leaf and SAR induction in tobacco. These results support our previous conclusion that SA is not likely to be the systemic signal.


Sign in / Sign up

Export Citation Format

Share Document