Genomic organization and neuronal cell type specific promoter activity of β isoform of Ca2+/calmodulin dependent protein kinase II of rat brain

2001 ◽  
Vol 94 (1-2) ◽  
pp. 35-47 ◽  
Author(s):  
Hitomi Donai ◽  
Hisayo Morinaga ◽  
Takashi Yamauchi
NeuroImage ◽  
2011 ◽  
Vol 54 (4) ◽  
pp. 2603-2611 ◽  
Author(s):  
Francis Odeh ◽  
Trygve B. Leergaard ◽  
Jana Boy ◽  
Thorsten Schmidt ◽  
Olaf Riess ◽  
...  

Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 135-146 ◽  
Author(s):  
S.K. Mann ◽  
R.A. Firtel

We and others have previously shown that cAMP-dependent protein kinase (PKA) activity is essential for aggregation, induction of prespore gene expression and multicellular development in Dictyostelium. In this manuscript, we further examine this regulatory role. We have overexpressed the Dictyostelium PKA catalytic subunit (PKAcat) in specific cell types during the multicellular stages, using prestalk and prespore cell-type-specific promoters to make PKA activity constitutive in these cells (independent of cAMP concentration). To examine the effects on cell-type differentiation, we cotransformed the PKAcat-expressing vectors with reporter constructs expressing lacZ from four cell-type-specific promoters: ecmA (specific for prestalk A cells); ecmB (specific for prestalk B and anterior-like cells in the slug); ecmB delta 89 (specific for stalk cells); and SP60 (prespore-cell-specific). By staining for beta-galactosidase expression histologically at various stages of development in individual strains, we were able to dissect the morphological changes in these strains, examine the spatial localization of the individual cell types, and understand the possible roles of PKA during multicellular development. Expression of PKAcat from either the ecmA or ecmB prestalk promoters resulted in abnormal development that arrested shortly after the mound stage, producing a mound with a round apical protrusion at the time of tip formation. Prestalk A and prestalk B cells were localized in the central region and the apical mound in the terminal differentiated aggregate, while prespore cells showed an aberrant spatial localization. Consistent with a developmental arrest, these mounds did not form either mature spores or stalk cells and very few cells expressed a stalk-cell-specific marker. Expression of PKAcat from the prespore promoter resulted in abnormal morphogenesis and accelerated spore cell differentiation. When cells were plated on agar, a fruiting body was formed with a very large basal region, containing predominantly spores, and a small, abnormal sorocarp. Mature spore cells were first detected by 14 hours, with maximal levels reached by 18–20 hours, in contrast to 24–26 hours in wild-type strains. When cells were plated on filters, they produced an elongated tip from a large basal region, which continued to elongate as a tubular structure and produce a ‘slug-like’ structure at the end. The slug was composed predominantly of prestalk cells with a few prespore cells restricted to the junction between the ‘slug’ and tube. As the slug migrated, these prespore cells were found in the tube, while new prespore cells appeared at the slug/tube junction, suggesting a continual differentiation of new prespore cells at the slug's posterior.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document