multicellular development
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 44)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Benedikt K Steinfeld ◽  
Qinna Cui ◽  
Tamara Schmidt ◽  
Ilka B Bischofs

Bacterial populations frequently encounter potentially lethal environmental stress factors. Growing Bacillus subtilis populations are comprised of a mixture of "motile" and "sessile" cells but how this affects population-level fitness under stress is poorly understood. Here, we show that, unlike sessile cells, motile cells are readily killed by monovalent cations under conditions of nutrient deprivation - owing to elevated expression of the lytABC operon, which codes for a cell-wall lytic complex. Forced induction of the operon in sessile cells also causes lysis. We demonstrate that population composition is regulated by the quorum sensing regulator ComA, which can favor either the motile or the sessile state. Specifically social interactions by ComX-pheromone signaling enhance population-level fitness under stress. Our study highlights the importance of characterizing population composition and cellular properties for studies of bacterial physiology and functional genomics. Our findings open new perspectives for understanding the functions of autolysins and collective behaviors that are coordinated by chemical and electrical signals, with implications for multicellular development and biotechnology.


2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Marco La Fortezza ◽  
Gregory J. Velicer

Aggregative multicellular development is a social process involving complex forms of cooperation among unicellular organisms. In some aggregative systems, development culminates in the construction of spore-packed fruiting bodies and often unfolds within genetically and behaviourally diverse conspecific cellular environments. Here, we use the bacterium Myxococcus xanthus to test whether the character of the cellular environment during aggregative development shapes its morphological evolution. We manipulated the cellular composition of Myxococcus development in an experiment in which evolving populations initiated from a single ancestor repeatedly co-developed with one of several non-evolving partners—a cooperator, three cheaters and three antagonists. Fruiting body morphology was found to diversify not only as a function of partner genotype but more broadly as a function of partner social character, with antagonistic partners selecting for greater fruiting body formation than cheaters or the cooperator. Yet even small degrees of genetic divergence between distinct cheater partners sufficed to drive treatment-level morphological divergence. Co-developmental partners also determined the magnitude and dynamics of stochastic morphological diversification and subsequent convergence. In summary, we find that even just a few genetic differences affecting developmental and social features can greatly impact morphological evolution of multicellular bodies and experimentally demonstrate that microbial warfare can promote cooperation.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1628
Author(s):  
Saara K. Luna ◽  
Frédéric J. J. Chain

Gene duplications generate new genes that can contribute to expression changes and the evolution of new functions. Genomes often consist of gene families that undergo expansions, some of which occur in specific lineages that reflect recent adaptive diversification. In this study, lineage-specific genes and gene family expansions were studied across five dictyostelid species to determine when and how they are expressed during multicellular development. Lineage-specific genes were found to be enriched among genes with biased expression (predominant expression in one developmental stage) in each species and at most developmental time points, suggesting independent functional innovations of new genes throughout the phylogeny. Biased duplicate genes had greater expression divergence than their orthologs and paralogs, consistent with subfunctionalization or neofunctionalization. Lineage-specific expansions in particular had biased genes with both molecular signals of positive selection and high expression, suggesting adaptive genetic and transcriptional diversification following duplication. Our results present insights into the potential contributions of lineage-specific genes and families in generating species-specific phenotypes during multicellular development in dictyostelids.


2021 ◽  
Vol 9 (10) ◽  
pp. 2143
Author(s):  
David E. Whitworth ◽  
Natashia Sydney ◽  
Emily J. Radford

Myxobacteria are fascinating and complex microbes. They prey upon other members of the soil microbiome by secreting antimicrobial proteins and metabolites, and will undergo multicellular development if starved. The genome sequence of the model myxobacterium Myxococcus xanthus DK1622 was published in 2006 and 15 years later, 163 myxobacterial genome sequences have now been made public. This explosion in genomic data has enabled comparative genomics analyses to be performed across the taxon, providing important insights into myxobacterial gene conservation and evolution. The availability of myxobacterial genome sequences has allowed system-wide functional genomic investigations into entire classes of genes. It has also enabled post-genomic technologies to be applied to myxobacteria, including transcriptome analyses (microarrays and RNA-seq), proteome studies (gel-based and gel-free), investigations into protein–DNA interactions (ChIP-seq) and metabolism. Here, we review myxobacterial genome sequencing, and summarise the insights into myxobacterial biology that have emerged as a result. We also outline the application of functional genomics and post-genomic approaches in myxobacterial research, highlighting important findings to emerge from seminal studies. The review also provides a comprehensive guide to the genomic datasets available in mid-2021 for myxobacteria (including 24 genomes that we have sequenced and which are described here for the first time).


Author(s):  
Cristina M Ostalé ◽  
Nuria Esteban ◽  
Ana López-Varea ◽  
Jose F de Celis

Abstract Protein kinases and phosphatases constitute a large family of conserved enzymes that control a variety of biological processes by regulating the phosphorylation state of target proteins. They play fundamental regulatory roles during cell cycle progression and signaling, among other key aspects of multicellular development. The complement of protein kinases and phosphatases includes approximately 326 members in Drosophila, and they have been the subject of several functional screens searching for novel components of signaling pathways and regulators of cell division and survival. These approaches have been carried out mostly in cell cultures using RNA interference to evaluate the contribution of each protein in different functional assays, and have contributed significantly to assign specific roles to the corresponding genes. In this work we describe the results of an evaluation of the Drosophila complement of kinases and phosphatases using the wing as a system to identify their functional requirements in vivo. We also describe the results of several modifying screens aiming to identify among the set of protein kinases and phosphatases additional components or regulators of the activities of the Epidermal Growth Factor and Insulin receptors signaling pathways.


Genetics ◽  
2021 ◽  
Author(s):  
Valentin Wernet ◽  
Jan Wäckerle ◽  
Reinhard Fischer

Abstract The striatin-interacting phosphatase and kinase complex (STRIPAK) is a highly conserved eukaryotic signaling hub involved in the regulation of many cellular processes. In filamentous fungi, STRIPAK controls multicellular development, hyphal fusion, septation and pathogenicity. In this study we analyzed the role of the STRIPAK complex in the nematode-trapping fungus Duddingtonia flagrans which forms three-dimensional, adhesive trapping networks to capture Caenorhabditis elegans. Trap networks consist of several hyphal loops which are morphologically and functionally different from vegetative hyphae. We show that lack of the STRIPAK component SipC (STRIP1/2/HAM-2/PRO22) results in incomplete loop formation and column-like trap structures with elongated compartments. The misshapen or incomplete traps lost their trap identity and continued growth as vegetative hyphae. The same effect was observed in the presence of the actin cytoskeleton drug cytochalasin A. These results could suggest a link between actin and STRIPAK complex functions.


Author(s):  
David Booth ◽  
Nicole King

Choanoflagellates, the closest living relatives of animals, have the potential to reveal the genetic and cell biological foundations of complex multicellular development in animals. Here we describe the history of research on the choanoflagellate Salpingoeca rosetta. From its original isolation in 2000 to the establishment of CRISPR-mediated genome editing in 2020, S. rosetta provides an instructive case study in the establishment of a new model organism.


2021 ◽  
Author(s):  
G. Ozan Bozdag ◽  
Seyed Alireza Zamani-Dahaj ◽  
Penelope C. Kahn ◽  
Thomas C. Day ◽  
Kai Tong ◽  
...  

The evolution of large organismal size is fundamentally important for multicellularity, creating new ecological niches and opportunities for the evolution of increased biological complexity. Yet little is known about how large size evolves, particularly in nascent multicellular organisms that lack genetically-regulated multicellular development. Here we examine the interplay between biological and biophysical drivers of macroscopic multicellularity using long-term experimental evolution. Over 600 daily transfers (~3,000 generations), multicellular snowflake yeast evolved macroscopic size, becoming ~2·104 times larger (~mm scale) and 104-fold more biophysically tough, while remaining clonal. They accomplished this through sustained biophysical adaptation, evolving increasingly elongate cells that initially reduced the strain of cellular packing, then facilitated branch entanglement so that groups of cells stay together even after many cellular bonds fracture. Four out of five replicate populations show evidence of predominantly adaptive evolution, with mutations becoming significantly enriched in genes affecting cell shape and cell-cell bonds. Taken together, this work shows how selection acting on the emergent properties of simple multicellular groups can drive sustained biophysical adaptation, an early step in the evolution of increasingly complex multicellular organisms.


2021 ◽  
Vol 10 (29) ◽  
Author(s):  
Ria Patel ◽  
Julia Chen ◽  
Julie Xu ◽  
Emily Erdmann ◽  
Zoephia Laughlin ◽  
...  

Here, we report the genome sequence of bacteriophage Elbi that infects the cyanobacterium Anabaena sp. strain PCC 7120, a model organism for prokaryotic multicellular development. The 68,626 bp encode 108 proteins, of which 31 can be assigned a function. Elbi is similar to two Anabaena myophages, namely, A-1 and N-1, isolated in the 1970s.


Sign in / Sign up

Export Citation Format

Share Document