Traffic modeling and analysis of hybrid fiber–coax systems

1998 ◽  
Vol 30 (8) ◽  
pp. 821-834 ◽  
Author(s):  
David J. Houck ◽  
Wai Sum Lai
2021 ◽  
Author(s):  
Qing Xu ◽  
Chaoyi Chen ◽  
Xueyang Chang ◽  
Dongpu Cao ◽  
Mengchi Cai ◽  
...  

Abstract The emergence of connected and automated vehicles (CAV) indicates improved traffic mobility in future traffic transportation systems. This study addresses the research gap in macroscopic traffic modeling of mixed traffic networks where CAV and human-driven vehicles coexist. CAV behavior is explicitly included in the proposed traffic network model, and the vehicle number non-conservation problem is overcome by describing the approaching and departure vehicle number in discrete time. The proposed model is verified in typical CAV cooperation scenarios. The performance of CAV coordination is analyzed in road, intersection and network scenario. Total travel time of the vehicles in the network is proved to be reduced when coordination are applied. Simulation results validate the accuracy of the proposed model and the effectiveness of the proposed algorithm.


Author(s):  
Christiane B. Santos ◽  
Flavio H. Teles Vieira ◽  
Flavio G. C. Rocha ◽  
Sergio G. Araujo ◽  
Fabio S. Marques ◽  
...  

1981 ◽  
Vol 64 (10) ◽  
pp. 18-27
Author(s):  
Yoshio Hamamatsu ◽  
Katsuhiro Nakada ◽  
Ikuo Kaji ◽  
Osamu Doi

2019 ◽  
Vol 3 (1) ◽  
pp. 160-165
Author(s):  
Hendry D. Chahyadi

The designs of automotive suspension system are aiming to avoid vibration generated by road condition interference to the driver. This final project is about a quarter car modeling with simulation modeling and analysis of Two-Mass modeling. Both existing and new modeling are being compared with additional spring in the sprung mass system. MATLAB program is developed to analyze using a state space model. The program developed here can be used for analyzing models of cars and vehicles with 2DOF. The quarter car modelling is basically a mass spring damping system with the car serving as the mass, the suspension coil as the spring, and the shock absorber as the damper. The existing modeling is well-known model for simulating vehicle suspension performance. The spring performs the role of supporting the static weight of the vehicle while the damper helps in dissipating the vibrational energy and limiting the input from the road that is transmitted to the vehicle. The performance of modified modelling by adding extra spring in the sprung mass system provides more comfort to the driver. Later on this project there will be comparison graphic which the output is resulting on the higher level of damping system efficiency that leads to the riding quality.


Sign in / Sign up

Export Citation Format

Share Document