Performance analysis for an irreversible variable temperature heat reservoir closed intercooled regenerated Brayton cycle

2003 ◽  
Vol 44 (17) ◽  
pp. 2713-2732 ◽  
Author(s):  
Wenhua Wang ◽  
Lingen Chen ◽  
Fengrui Sun ◽  
Chih Wu
Author(s):  
Vishal Anand ◽  
Krishna Nelanti ◽  
Kamlesh G. Gujar

The gas turbine engine works on the principle of the Brayton Cycle. One of the ways to improve the efficiency of the gas turbine is to make changes in the Brayton Cycle. In the present study, Brayton Cycle with intercooling, reheating and regeneration with variable temperature heat reservoirs is considered. Instead of the usual thermodynamic efficiency, the Second law efficiency, defined on the basis of lost work, has been taken as a parameter to study the deviation of the irreversible Brayton Cycle from the ideal cycle. The Second law efficiency of the Brayton Cycle has been found as a function of reheat and intercooling pressure ratios, total pressure ratio, intercooler, regenerator and reheater effectiveness, hot and cold side heat exchanger effectiveness, turbine and compressor efficiency and heating capacities of the heating fluid, the cooling fluid and the working fluid (air). The variation of the Second law efficiency with all these parameters has been presented. From the results, it can be seen that the Second law efficiency first increases and then decreases with increase in intercooling pressure ratio and increases with increase in reheating pressure ratio. The results show that the Second law efficiency is a very good indicator of the amount of irreversibility of the cycle.


Author(s):  
L Chen ◽  
J Zheng ◽  
F Sun ◽  
C Wu

The power density is taken as an objective for performance analysis of an irreversible closed Brayton cycle coupled to variable-temperature heat reservoirs. The analytical formulas about the relationship between power density and working fluid temperature ratio (pressure ratio) are derived with the heat resistance losses in the hot- and cold-side heat exchangers, the irreversible compression and expansion losses in the compressor and turbine, and the effect of the finite thermal capacity rate of the heat reservoirs. The obtained results are compared with those results obtained by using the maximum power criterion. The influences of some design parameters, including the temperature ratio of the heat reservoirs, the effectivenesses of the heat exchangers between the working fluid and the heat reservoirs, and the efficiencies of the compressor and the turbine, on the maximum power density are provided by numerical examples, and the advantages and disadvantages of maximum power density design are analysed. The power plant design with maximum power density leads to a higher efficiency and smaller size. When the heat transfers between the working fluid and the heat reservoirs are carried out ideally and the thermal capacity rates of the heat reservoirs are infinite, the results of this article become similar to those obtained in the recent literature.


Sign in / Sign up

Export Citation Format

Share Document