The Canonical Basis for the Quantum Group of Type B2

2013 ◽  
Vol 33 (5) ◽  
pp. 1499-1506
Author(s):  
Jie ZHANG
2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Brendon Rhoades

International audience The polynomial ring $\mathbb{Z}[x_{11}, . . . , x_{33}]$ has a basis called the dual canonical basis whose quantization facilitates the study of representations of the quantum group $U_q(\mathfrak{sl}3(\mathbb{C}))$. On the other hand, $\mathbb{Z}[x_{11}, . . . , x_{33}]$ inherits a basis from the cluster monomial basis of a geometric model of the type $D_4$ cluster algebra. We prove that these two bases are equal. This extends work of Skandera and proves a conjecture of Fomin and Zelevinsky. This also provides an explicit factorization of the dual canonical basis elements of $\mathbb{Z}[x_{11}, . . . , x_{33}]$ into irreducible polynomials. L'anneau de polynômes $\mathbb{Z}[x_{11}, . . . , x_{33}]$ a une base appelée base duale canonique, et dont une quantification facilite l'étude des représentations du groupe quantique $U_q(\mathfrak{sl}3(\mathbb{C}))$. D'autre part, $\mathbb{Z}[x_{11}, . . . , x_{33}]$ admet une base issue de la base des monômes d'amas de l'algèbre amassée géométrique de type $D_4$. Nous montrons que ces deux bases sont égales. Ceci prolonge les travaux de Skandera et démontre une conjecture de Fomin et Zelevinsky. Ceci fournit également une factorisation explicite en polynômes irréductibles des éléments de la base duale canonique de $\mathbb{Z}[x_{11}, . . . , x_{33}]$ .


2010 ◽  
Vol Vol. 12 no. 5 (Combinatorics) ◽  
Author(s):  
Brendon Rhoades

Combinatorics International audience The polynomial ring Z[x(11), ..., x(33)] has a basis called the dual canonical basis whose quantization facilitates the study of representations of the quantum group U-q(sl(3) (C)). On the other hand, Z[x(1 1), ... , x(33)] inherits a basis from the cluster monomial basis of a geometric model of the type D-4 cluster algebra. We prove that these two bases are equal. This extends work of Skandera and proves a conjecture of Fomin and Zelevinsky.


2018 ◽  
Vol 70 (4) ◽  
pp. 773-803 ◽  
Author(s):  
Jie Du ◽  
Zhonghua Zhao

AbstractWe will give a representation-theoretic proof for the multiplication formula in the Ringel-Hall algebra of a cyclic quiver Δ(n). As a first application, we see immediately the existence of Hall polynomials for cyclic quivers, a fact established by J. Y. Guo and C. M. Ringel, and derive a recursive formula to compute them. We will further use the formula and the construction of a monomial basis for given by Deng, Du, and Xiao together with the double Ringel-Hall algebra realisation of the quantum loop algebra given by Deng, Du, and Fu to develop some algorithms and to compute the canonical basis for . As examples, we will show explicitly the part of the canonical basis associated with modules of Lowey length at most 2 for the quantum group .


2021 ◽  
Vol 157 (7) ◽  
pp. 1507-1537
Author(s):  
Huanchen Bao ◽  
Weiqiang Wang

For quantum symmetric pairs $(\textbf {U}, \textbf {U}^\imath )$ of Kac–Moody type, we construct $\imath$ -canonical bases for the highest weight integrable $\textbf U$ -modules and their tensor products regarded as $\textbf {U}^\imath$ -modules, as well as an $\imath$ -canonical basis for the modified form of the $\imath$ -quantum group $\textbf {U}^\imath$ . A key new ingredient is a family of explicit elements called $\imath$ -divided powers, which are shown to generate the integral form of $\dot {\textbf {U}}^\imath$ . We prove a conjecture of Balagovic–Kolb, removing a major technical assumption in the theory of quantum symmetric pairs. Even for quantum symmetric pairs of finite type, our new approach simplifies and strengthens the integrality of quasi- $K$ -matrix and the constructions of $\imath$ -canonical bases, by avoiding a case-by-case rank-one analysis and removing the strong constraints on the parameters in a previous work.


2012 ◽  
Vol 19 (01) ◽  
pp. 117-136 ◽  
Author(s):  
Xiaochao Li ◽  
Yuwang Hu

All 62 monomial elements and 144 polynomial elements with one-dimensional support in the canonical basis B of the quantum group for type A4 have been determined in [5] and [4], respectively. It is conjectured in [4] that there are other polynomial elements in B with two- or three-dimensional support. In this paper, we compute 50 polynomial elements with two-dimensional support of different-exponent type and 62 polynomial elements with two-dimensional support of same-exponent type in the canonical basis B of the quantum group for type A4.


Author(s):  
Martijn Caspers

Abstract One of the main aims of this paper is to give a large class of strongly solid compact quantum groups. We do this by using quantum Markov semigroups and noncommutative Riesz transforms. We introduce a property for quantum Markov semigroups of central multipliers on a compact quantum group which we shall call ‘approximate linearity with almost commuting intertwiners’. We show that this property is stable under free products, monoidal equivalence, free wreath products and dual quantum subgroups. Examples include in particular all the (higher-dimensional) free orthogonal easy quantum groups. We then show that a compact quantum group with a quantum Markov semigroup that is approximately linear with almost commuting intertwiners satisfies the immediately gradient- ${\mathcal {S}}_2$ condition from [10] and derive strong solidity results (following [10]). Using the noncommutative Riesz transform we also show that these quantum groups have the Akemann–Ostrand property; in particular, the same strong solidity results follow again (now following [27]).


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 933
Author(s):  
Yasemen Ucan ◽  
Resat Kosker

The real forms of complex groups (or algebras) are important in physics and mathematics. The Lie group SL2,C is one of these important groups. There are real forms of the classical Lie group SL2,C and the quantum group SL2,C in the literature. Inspired by this, in our study, we obtain the real forms of the fractional supergroups shown with A3NSL2,C, for the non-trivial N = 1 and N = 2 cases, that is, the real forms of the fractional supergroups A31SL2,C and A32SL2,C.


1992 ◽  
Vol 42 (12) ◽  
pp. 1337-1344 ◽  
Author(s):  
M. Honusek ◽  
M. Vinduśka ◽  
V. Wagner

Sign in / Sign up

Export Citation Format

Share Document