Fractional integral inequalities and their applications to fractional differential equations

2016 ◽  
Vol 36 (5) ◽  
pp. 1317-1330 ◽  
Author(s):  
Yaghoub JALILIAN
Filomat ◽  
2020 ◽  
Vol 34 (10) ◽  
pp. 3299-3310
Author(s):  
Djamal Foukrach ◽  
Badreddine Meftah

The aim purpose of the present work is to investigate some new nonlinear Gronwall-Bellman-Bihari type inequalities with singular kernel via k-fractional integral of Riemann-Liouville. This investigation generalizes some integral inequalities obtained in the literature and extends some other existing types of fractional integral inequalities. The obtained findings can be used to study some properties of solution for fractional differential equations.


Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Bashir Ahmad ◽  
Ahmed Alsaedi ◽  
Hana Al-Hutami

AbstractThis paper investigates the existence of solutions for a nonlinear boundary value problem of sequential fractional differential equations with four-point nonlocal Riemann-Liouville type fractional integral boundary conditions. We apply Banach’s contraction principle and Krasnoselskii’s fixed point theorem to establish the existence of results. Some illustrative examples are also presented.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1093
Author(s):  
Daniel Cao Labora

One major question in Fractional Calculus is to better understand the role of the initial values in fractional differential equations. In this sense, there is no consensus about what is the reasonable fractional abstraction of the idea of “initial value problem”. This work provides an answer to this question. The techniques that are used involve known results concerning Volterra integral equations, and the spaces of summable fractional differentiability introduced by Samko et al. In a few words, we study the natural consequences in fractional differential equations of the already existing results involving existence and uniqueness for their integral analogues, in terms of the Riemann–Liouville fractional integral. In particular, we show that a fractional differential equation of a certain order with Riemann–Liouville derivatives demands, in principle, less initial values than the ceiling of the order to have a uniquely determined solution, in contrast to a widely extended opinion. We compute explicitly the amount of necessary initial values and the orders of differentiability where these conditions need to be imposed.


2019 ◽  
Vol 52 (1) ◽  
pp. 204-212 ◽  
Author(s):  
Fuat Usta ◽  
Mehmet Zeki Sarıkaya

AbstractIn this study we introduced and tested retarded conformable fractional integral inequalities utilizing non-integer order derivatives and integrals. In line with this purpose, we used the Katugampola type conformable fractional calculus which has several practical properties. These inequalities generalize some famous integral inequalities which provide explicit bounds on unknown functions. The results provided here had been implemented to the global existence of solutions to the conformable fractional differential equations with time delay.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1755
Author(s):  
M. S. Al-Sharif ◽  
A. I. Ahmed ◽  
M. S. Salim

Fractional differential equations have been applied to model physical and engineering processes in many fields of science and engineering. This paper adopts the fractional-order Chelyshkov functions (FCHFs) for solving the fractional differential equations. The operational matrices of fractional integral and product for FCHFs are derived. These matrices, together with the spectral collocation method, are used to reduce the fractional differential equation into a system of algebraic equations. The error estimation of the presented method is also studied. Furthermore, numerical examples and comparison with existing results are given to demonstrate the accuracy and applicability of the presented method.


Author(s):  
Natthaphong Thongsalee ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

AbstractIn this paper we study a new class of Riemann-Liouville fractional differential equations subject to nonlocal Erdélyi-Kober fractional integral boundary conditions. Existence and uniqueness results are obtained by using a variety of fixed point theorems, such as Banach fixed point theorem, Nonlinear Contractions, Krasnoselskii fixed point theorem, Leray-Schauder Nonlinear Alternative and Leray-Schauder degree theory. Examples illustrating the obtained results are also presented.


Sign in / Sign up

Export Citation Format

Share Document