Tan spot of wheat (Triticum aestivum L.) infection at different stages of crop development and inoculum type

2003 ◽  
Vol 22 (1) ◽  
pp. 157-169 ◽  
Author(s):  
Analı́a Perello ◽  
Virginia Moreno ◽  
Marı́a Rosa Simón ◽  
Marina Sisterna
Genome ◽  
1996 ◽  
Vol 39 (3) ◽  
pp. 598-604 ◽  
Author(s):  
W. S. Stock ◽  
A. L. Brûlé-Babel ◽  
G. A. Penner

Several sources of high-level resistance to tan spot caused by Pyrenophora tritici-repentis have been identified in hexaploid wheat (Triticum aestivum L.). This study was conducted to determine the number and chromosome location of a gene(s) in the cultivar Chinese Spring (CS) that confers resistance to a tan necrosis inducing isolate (nec+chl−) of P. tritici-repentis, 86-124, and insensitivity to Ptr necrosis toxin. Reciprocal crosses were made between CS (resistant–insensitive) and 'Kenya Farmer' (KF) (susceptible–sensitive). Analysis of the CS/KF F1and F2 populations and F2-derived F3 families identified a single nuclear recessive gene governing resistance to isolate 86-124 and Ptr necrosis toxin. Evaluation of the CS(KF) substitution series, F2 monosomic analysis, and screening of a series of 19 CS compensating nullitetrasomic and two ditelosomic lines (2AS and 5BL) indicated that the resistance gene was located on chromosome arm 5BL. No linkage exists between Lr18 and the tan necrosis resistance gene on chromosome arm 5BL. It is proposed that the gene for resistance to the tan necrosis inducing isolate 86-124 (nec+chl−) of P. tritici-repentis and Ptr necrosis toxin be named tsn1. Key words : wheat, Triticum aestivum L., tan spot resistance, Pyrenophora tritici-repentis (Died.) Drechs., chromosome location, Ptr necrosis toxin.


2001 ◽  
Vol 81 (3) ◽  
pp. 527-533 ◽  
Author(s):  
S. D. Duguid ◽  
A. L. Brûlé-Babel

Tan spot is a residue-borne leaf spotting disease caused by the fungal pathogen Pyrenophora tritici-repentis. An understanding of the inheritance of resistance is required to build a strategy for incorporating tan spot resistance into commercial cultivars of wheat. The objectives of this study were to determine the inheritance of host resistance to isolates of races 2 (a necrosis-inducing race) and 3 (a chlorosis-inducing race) of P. tritici-repentis. Crosses were made between seven wheat (Triticum aestivum) genotypes (Katepwa, BH1146, ST15, ST6, Erik, 6B1043, 6B367). Parents, F1, F2and F2-derived F3 populations were inoculated with isolates 86-124 and D308 (races 2 and 3, respectively) of P. tritici-repentis and infiltrated with Ptr ToxA. Resistance to 86-124 and insensitivity to Ptr ToxA was controlled by a single recessive nuclear gene in all of the resistant/susceptible crosses. In contrast, resistance to D308 was controlled by a single dominant nuclear gene in five crosses and two genes in two crosses. In the BH1146/ST15 cross two dominant genes controlled resistance to D308, while in the Katepwa/ST15 cross two recessive genes controlled resistance. Reactions to race 2 were independent of reactions to race 3 and controlled by independent genetic systems. Key words: Triticum aestivum L., Pyrenophora tritici-repentis (Died.) Drechs., disease resistance, inheritance, Ptr necrosis toxin, tan spot


2021 ◽  
Vol 7 (6) ◽  
pp. 60829-60840
Author(s):  
Eduardo Carlos Rüdell ◽  
Argel José Giacomini ◽  
Dieferson Frandaloso ◽  
Bianca Antoniolli Zanrosso ◽  
Fernando Machado dos Santos ◽  
...  

Wheat is the most important income-generating crop in southern Brazil during the cold season. It also contributes to the crop rotation system and increases the yield of successive crops. During its growth cycle, herbicides are used to control weeds, which are the main factor limiting wheat productivity. Further, high costs of weed control directly affect crop economic returns. The objective of this study was to evaluate the effect of the application of two herbicides, namely, 2,4-D and iodosulfuron-methyl, on the productivity of two wheat cultivars during the nine different stages of crop development. The most suitable crop stage for herbicide application, as described in the corresponding label on the package, is at the beginning of tillering. 2,4-D had a significant impact on productivity parameters, reducing the number of tillers, the number of ears, and the number of tillers without grains, while increasing the number of tillers without ears and ears without grains, indicating greater phytotoxicity and, ultimately, reducing crop productivity. Conversely, iodosulfuron-methyl showed greater selectivity to the wheat cultivars tested and caused a much lesser impact on the productivity parameters measured.


2016 ◽  
Vol 51 (3) ◽  
pp. 327-334
Author(s):  
А.С. РУДАКОВА ◽  
◽  
С.В. РУДАКОВ ◽  
Н.В. ДАВЫДОВА ◽  
Г.В. МИРСКАЯ ◽  
...  

2018 ◽  
Vol 53 (3) ◽  
pp. 578-586 ◽  
Author(s):  
P.N. Tsygvintsev ◽  
◽  
L.I. Goncharova ◽  
K.V. Manin ◽  
V.M. Rachkova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document