NASA Perseverance rover hit by 100 dust devils on Mars

2021 ◽  
Vol 251 (3353) ◽  
pp. 18
Author(s):  
Jonathan O'Callaghan
Keyword(s):  
2021 ◽  
Vol 50 ◽  
pp. 100678
Author(s):  
Gabriele Franzese ◽  
Simone Silvestro ◽  
David A. Vaz ◽  
Ciprian Ionut Popa ◽  
Fabio Cozzolino ◽  
...  
Keyword(s):  

2016 ◽  
Vol 73 (12) ◽  
pp. 4927-4943 ◽  
Author(s):  
Steven P. Oncley ◽  
Oscar Hartogensis ◽  
Chenning Tong

Abstract Vortices in the atmospheric surface layer are characterized using observations at unprecedented resolution from a fixed array of 31 turbulence sensors. During the day, these vortices likely are dust devils, though no visual observations are available for confirmation. At night, hairpin vortices appear to have been observed. The structure and dynamics of several types of vortices are described and related to other vortex investigations, including tornadoes and hurricanes.


2017 ◽  
Vol 72 (8) ◽  
pp. 763-778
Author(s):  
Sanjay Kumar Pandey ◽  
Jagdish Prasad Maurya

AbstractIt is intended to model mathematically an ideal whirlwind which characterises this geo-physical phenomenon and eventually helps us decode the inherent dynamics. A dense cylindrical aerial mass is taken into consideration surrounding a rarer aerial region in order to keep a radial favourable gradient of pressure to sustain a rotational motion. It has been concluded that the whirlwind will survive as long as the low pressure region exists. The vertical pressure gradient also plays an equally important role. Since it is not connected to any cloud and the axial velocity is in the vertically upward direction, the momentary vertical gradient of pressure is required for its growth and survival. Horizontal ambient winds that rush towards low pressure zone, crush the air in the buffer zone, and turn vertically upward may also take the dust carried with them visibly to some height. It is considered that the angular azimuthal velocity varies within the annulus. An inference is that no whirlwind without a low pressure region within it can survive. This may be termed as the fundamental characteristic of whirlwind. It is further concluded that if the radial pressure difference between the outermost and innermost layers is larger, the whirlwind is thicker and consequently, it will last longer. Moreover, another conclusion arrived at is that the angular velocity will vanish if the inner radius is zero.


Author(s):  
Alexander E. Stott ◽  
Constantinos Charalambous ◽  
Tristram J. Warren ◽  
William T. Pike ◽  
Robert Myhill ◽  
...  

ABSTRACT The National Aeronautics and Space Administration InSight mission has deployed the seismic experiment, SEIS, on the surface of Mars, and has recorded a variety of signals including marsquakes and dust devils. This work presents results on the tilt and local noise sources, which provide context to aid interpretation of the observed signals and allow an examination of the near-surface properties. Our analysis uses data recorded by the short-period sensors on the deck, throughout deployment and in the final configuration. We use thermal decorrelation to provide an estimate of the sol-to-sol tilt. This tilt is examined across deployment and over a Martian year. After each modification to the site, the tilt is seen to stabilize over 3–20 sols depending on the action, and the total change in tilt is <0.035°. Long-term tilt over a Martian year is limited to <0.007°. We also investigate the attenuation of lander-induced vibrations between the lander and SEIS. Robotic arm motions provide a known lander source in the 5–9 Hz bandwidth, yielding an amplitude attenuation of lander signals between 100 and 1000 times. The attenuation of wind sensitivity from the deck to ground presents a similar value in the 1.5–9 Hz range, thus favoring a noise dominated by lander vibrations induced by the wind. Wind sensitivities outside this bandwidth exhibit different sensitivity changes, indicating a change in the coupling. The results are interpreted through a finite-element analysis of the regolith with a depth-dependent Young’s modulus. We argue that discrepancies between this model and the observations are due to local compaction beneath the lander legs and/or anelasticity. An estimate for the effective Young’s modulus is obtained as 62–81 MPa, corroborating previous estimates for the top layer duricrust.


2000 ◽  
Vol 38 (2) ◽  
pp. 870-876 ◽  
Author(s):  
S.M. Metzger ◽  
J.R. Carr ◽  
J.R. Johnson ◽  
T.J. Parker ◽  
M.T. Lemmon
Keyword(s):  

1990 ◽  
Vol 29 (6) ◽  
pp. 498-507 ◽  
Author(s):  
G. D. Hess ◽  
K. T. Spillane
Keyword(s):  

10.1175/819.1 ◽  
2004 ◽  
Vol 19 (6) ◽  
pp. 1075-1088 ◽  
Author(s):  
Albert E. Pietrycha ◽  
Erik N. Rasmussen

Abstract Mobile mesonet line normal, time-to-space converted data analysis on three meridional drylines that occurred in west Texas on 10 June 1999 and 5 May 2000 are presented herein; two occurred in a quiescent environment on 5 May 2000. Based on the data, the mixing zone across the dryline was composed of a series of large horizontal moisture differentials that were highly variable in width, ranging from 5 km down to several hundred meters. The largest dewpoint differential sampled was 10.0°C over 185 m. Concurrent with a deceleration of dryline movement to nearly stationary, and while moisture differentials strengthened, surface-based mesoscale vertical circulations with horizontal diameters of 2 km down to less than 300 m were resolved in the data, and visual observations were made of numerous, strongly rotating dust devils. The estimated diameters of the largest dust devils were ∼80–100 m and ∼1 km deep, and these persisted for tens of minutes. All vortices were found to move along or adjacent to the zones of moisture differential. Additionally, when the circulations were observed, spatially isolated cumulus clouds located along the dryline exhibited rapid vertical development. It is plausible that the vortices protect an ascending air parcel by inhibiting mixing, thus allowing the parcel to reach its local lifting condensation level and level of free convection with relatively greater buoyancy than parcels not contained in vortices.


2015 ◽  
pp. 680-681
Author(s):  
Barbara Stracke
Keyword(s):  

2020 ◽  
Vol 499 (4) ◽  
pp. 5665-5678
Author(s):  
H Chawner ◽  
A D P Howard ◽  
H L Gomez ◽  
M Matsuura ◽  
F Priestley ◽  
...  

ABSTRACT We present complicated dust structures within multiple regions of the candidate supernova remnant (SNR) the ‘Tornado’ (G357.7–0.1) using observations with Spitzer and Herschel. We use point process mapping, ppmap, to investigate the distribution of dust in the Tornado at a resolution of 8 arcsec, compared to the native telescope beams of 5–36 arcsec. We find complex dust structures at multiple temperatures within both the head and the tail of the Tornado, ranging from 15 to 60 K. Cool dust in the head forms a shell, with some overlap with the radio emission, which envelopes warm dust at the X-ray peak. Akin to the terrestrial sandy whirlwinds known as ‘dust devils’, we find a large mass of dust contained within the Tornado. We derive a total dust mass for the Tornado head of 16.7 $\rm M_{\odot }$, assuming a dust absorption coefficient of κ300 = 0.56 $\rm m^2\, kg^{-1}$, which can be explained by interstellar material swept up by a SNR expanding in a dense region. The X-ray, infrared, and radio emission from the Tornado head indicate that this is a SNR. The origin of the tail is more unclear, although we propose that there is an X-ray binary embedded in the SNR, the outflow from which drives into the SNR shell. This interaction forms the helical tail structure in a similar manner to that of the SNR W50 and microquasar SS 433.


Sign in / Sign up

Export Citation Format

Share Document