Integrative assessment of sediment quality history in pulp mill recipient area in Finland

1999 ◽  
Vol 40 (11-12) ◽  
1999 ◽  
Vol 40 (11-12) ◽  
pp. 139-146 ◽  
Author(s):  
Mika A. Kähkönen ◽  
Mikko Liukkonen ◽  
Christoph Wittmann ◽  
Kimmo P. Suominen ◽  
Mirja S. Salkinoja-Salonen

Sediments were dated and the quality assessed by polyphasic approach in an area of Lake Saimaa, which has received waste water from bleached kraft pulp production since 1954. The chosen nonrecipient forest Lake Pyylampi was situated in the same area. The activities of the enzymes butyrate-esterase and aminopeptidase were depressed at the depth of 2 to 8 cm in the recipient but not in the forst lake sediment. In the same layers the contents of EOX-C1 and toxicity to Vibrio fischeri were very high compared to those above or below. Toxicity to microbial community in the 2 to 8 cm layer was also indicated by a gap in the ATP content and a drop in diatom species richness from the 70 species to < 50 reflecting decreased water quality of the pelagic area. All these changes dated to the period of heavy organic halogen discharges, from 1960 to late 1980s, which led to sediment accumulation of solvent soluble halogen at a depth of 2 to 8 cm, to 6.4 g m−2 (cm)−1. In the most polluted sediment layers heavy metal accumulation was too little to be related to the toxicity of these layers. Almost complete recovery of both the sediment microbial ecosystems and of the pelagic diatoms occurred after elemental chlorine was completely substituted by chlorine dioxide and biological treatment adopted for wastewaters. Butyrate-esterase and aminopeptidase, but not phosphatase, activities correlated positively with the ATP content of the sediment. Butyrate-esterase may be used as a tool to estimate microbial biomass.


1998 ◽  
Vol 17 (6) ◽  
pp. 1073-1084 ◽  
Author(s):  
T. Ángel DelValls ◽  
Jesús M. Forja ◽  
Abelardo Gómez-Parra

2017 ◽  
Vol 40 (4) ◽  
pp. 1465-1480 ◽  
Author(s):  
Estefanía Bonnail ◽  
Lucas M. Buruaem ◽  
Lucas G. Morais ◽  
Giuliana S. Araujo ◽  
Denis M. S. Abessa ◽  
...  

2014 ◽  
Vol 49 (3) ◽  
pp. 265-278 ◽  
Author(s):  
Sang Hee Hong ◽  
Gi Myung Han ◽  
Un Hyuk Yim ◽  
Dhong-il Lim ◽  
Sung Yong Ha ◽  
...  

TAPPI Journal ◽  
2013 ◽  
Vol 12 (6) ◽  
pp. 9-15 ◽  
Author(s):  
TOMI HIETANEN ◽  
JUHA TAMPER ◽  
KAJ BACKFOLK

The use of a new, technical, high-purity magnesium hydroxide-based peroxide bleaching additive was evaluated in full mill-scale trial runs on two target brightness levels. Trial runs were conducted at a Finnish paper mill using Norwegian spruce (Picea abies) as the raw material in a conventional pressurized groundwood process, which includes a high-consistency peroxide bleaching stage. On high brightness grades, the use of sodium-based additives cause high environmental load from the peroxide bleaching stage. One proposed solution to this is to replace all or part of the sodium hydroxide with a weaker alkali, such as magnesium hydroxide. The replacement of traditional bleaching additives was carried out stepwise, ranging from 0% to 100%. Sodium silicate was dosed in proportion to sodium hydroxide, but with a minimum dose of 0.5% by weight on dry pulp. The environmental effluent load from bleaching of both low and high brightness pulps was significantly reduced. We observed a 35% to 48% reduction in total organic carbon (TOC), 37% to 40% reduction in chemical oxygen demand (COD), and 34% to 60% reduction in biological oxygen demand (BOD7) in the bleaching effluent. At the same time, the target brightness was attained with all replacement ratios. No interference from transition metal ions in the process was observed. The paper quality and paper machine runnability remained good during the trial. These benefits, in addition to the possibility of increasing production capacity, encourage the implementation of the magnesium hydroxide-based bleaching concept.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (8) ◽  
pp. 17-24 ◽  
Author(s):  
HAKIM GHEZZAZ ◽  
LUC PELLETIER ◽  
PAUL R. STUART

The evaluation and process risk assessment of (a) lignin precipitation from black liquor, and (b) the near-neutral hemicellulose pre-extraction for recovery boiler debottlenecking in an existing pulp mill is presented in Part I of this paper, which was published in the July 2012 issue of TAPPI Journal. In Part II, the economic assessment of the two biorefinery process options is presented and interpreted. A mill process model was developed using WinGEMS software and used for calculating the mass and energy balances. Investment costs, operating costs, and profitability of the two biorefinery options have been calculated using standard cost estimation methods. The results show that the two biorefinery options are profitable for the case study mill and effective at process debottlenecking. The after-tax internal rate of return (IRR) of the lignin precipitation process option was estimated to be 95%, while that of the hemicellulose pre-extraction process option was 28%. Sensitivity analysis showed that the after tax-IRR of the lignin precipitation process remains higher than that of the hemicellulose pre-extraction process option, for all changes in the selected sensitivity parameters. If we consider the after-tax IRR, as well as capital cost, as selection criteria, the results show that for the case study mill, the lignin precipitation process is more promising than the near-neutral hemicellulose pre-extraction process. However, the comparison between the two biorefinery options should include long-term evaluation criteria. The potential of high value-added products that could be produced from lignin in the case of the lignin precipitation process, or from ethanol and acetic acid in the case of the hemicellulose pre-extraction process, should also be considered in the selection of the most promising process option.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (4) ◽  
pp. 265-272 ◽  
Author(s):  
ROHAN BANDEKAR ◽  
JIM FREDERICK ◽  
JAROSLAV STAVIK

This study addresses the challenges a dissolving-grade pulp mill in Canada faced in 2014 in meeting its total reduced sulfur (TRS) gas emission limit. These emissions from the recovery boiler exit are controlled by passing the boiler exit gas through a TRS scrubber system. The mill employs a cyclonic direct contact evaporator to concentrate black liquor to firing solids content. The off-gases from the direct contact evaporator flow to the effluent gas control system that consists of a venturi scrubber, a packed bed scrubber, and a heat recovery unit. Emissions of TRS greater than the regulated limit of 15 ppm were observed for a 4-month period in 2014. The level of emissions measured during this period was significantly higher than about 12 ppm, the expected average value based on historic experience. The problem persisted from mid-June 2014 until the annual mill shutdown in October 2014. The main TRS components detected and the performance of the Teller scrubber in capturing them are examined. Other potential causes for these emissions are identified, including mechanical problems such as broken packing in the TRS packed bed scrubber, broken baffle plates in the scrubber, and cyclone evaporator leaks causing air ingress. Repairs were carried out during the mill shutdown, which eliminated the TRS emissions problem.


Sign in / Sign up

Export Citation Format

Share Document