Environmental benefits of magnesium hydroxide-based peroxide bleaching of mechanical pulp – mill results

TAPPI Journal ◽  
2013 ◽  
Vol 12 (6) ◽  
pp. 9-15 ◽  
Author(s):  
TOMI HIETANEN ◽  
JUHA TAMPER ◽  
KAJ BACKFOLK

The use of a new, technical, high-purity magnesium hydroxide-based peroxide bleaching additive was evaluated in full mill-scale trial runs on two target brightness levels. Trial runs were conducted at a Finnish paper mill using Norwegian spruce (Picea abies) as the raw material in a conventional pressurized groundwood process, which includes a high-consistency peroxide bleaching stage. On high brightness grades, the use of sodium-based additives cause high environmental load from the peroxide bleaching stage. One proposed solution to this is to replace all or part of the sodium hydroxide with a weaker alkali, such as magnesium hydroxide. The replacement of traditional bleaching additives was carried out stepwise, ranging from 0% to 100%. Sodium silicate was dosed in proportion to sodium hydroxide, but with a minimum dose of 0.5% by weight on dry pulp. The environmental effluent load from bleaching of both low and high brightness pulps was significantly reduced. We observed a 35% to 48% reduction in total organic carbon (TOC), 37% to 40% reduction in chemical oxygen demand (COD), and 34% to 60% reduction in biological oxygen demand (BOD7) in the bleaching effluent. At the same time, the target brightness was attained with all replacement ratios. No interference from transition metal ions in the process was observed. The paper quality and paper machine runnability remained good during the trial. These benefits, in addition to the possibility of increasing production capacity, encourage the implementation of the magnesium hydroxide-based bleaching concept.

2010 ◽  
Vol 25 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Yonghao Ni ◽  
Zhibin He

Abstract Magnesium hydroxide, which is a weak alkali, can be used as the alkali source for peroxide bleaching of mechanical pulps. This magnesium hydroxide-based peroxide bleaching process has been commercialized in the paper industry. In this paper, we review the literature results regarding the process chemistry of the Mg(OH)2-based peroxide bleaching process, including the kinetics, peroxide decomposition, anionic trash/COD/oxalate formation, the effect on pulp properties. The benefits associated with the Mg(OH)2- based peroxide bleaching process are discussed. We also discuss the mill implementation of the Mg(OH)2- based peroxide bleaching process in the pulp and paper industry. A case is presented where magnesium hydroxide completely replaces sodium hydroxide as the alkali source. A partial magnesium substitution for sodium hydroxide can also be an option.


2016 ◽  
Vol 87 (10) ◽  
pp. 1155-1164 ◽  
Author(s):  
Chaoran Meng ◽  
Zhaoling Li ◽  
Chaoyun Wang ◽  
Chongwen Yu

Sodium hydroxide is commonly used as the main alkali source in the oxidation degumming of ramie in the current studies for natural fiber extraction. However, due to the strong alkalinity of sodium hydroxide, the oxidation reaction speed of hydrogen peroxide is difficult to control and thus results in great damage to the treated fibers. In this paper, magnesium hydroxide was selected as an effective sustained-release alkali source to improve the tensile properties of degummed fibers and reduce the chemical oxygen demand (COD) values of degumming wastewater. This novel reagent can adjust and buffer pH values in the degumming solution. The chemical components and structure properties of degummed fibers were characterized by Fourier transform infrared spectroscopy and X-ray diffraction, respectively, and the as-developed oxidation degumming solution performance was monitored by an oxidation–reduction potentiometer. The results showed that the optimal substitution rate of magnesium hydroxide was 20% during the oxidation process. Compared with the degummed fibers without magnesium hydroxide, the tenacity, work of rupture and degumming yield of treated fibers increased by 39.82%, 46.15% and 5%, respectively. Moreover, the COD values of wastewater decreased by 20% at the same time.


2013 ◽  
Vol 690-693 ◽  
pp. 1455-1460
Author(s):  
Wen Bo Wang ◽  
Fan Gong Kong ◽  
Shou Juan Wang ◽  
Ya Jie Zhong ◽  
Gui Hua Yang

Sodium hydroxide (NaOH) substituted by magnesium hydroxide (Mg(OH)2) as control agent and alkali source were investigated in chlorine dioxide bleaching and hydrogen peroxide bleaching of NaOH-AQ wheat straw pulp. The effects of alkali sources on pulp properties, including brightness and tensile strength, were investigated. The four experimental groups, including DNaOHPNaOH, DNaOHPMg(OH)2, D Mg(OH)2PNaOH and DMg(OH)2PMg(OH)2, were studied in this paper. The results showed that the brightness and tensile strength of DMg(OH)2PMg(OH)2 pulp was slightly lower than that of DNaOHPNaOH pulp. But there were more residual ClO2 and residual H2O2 in the effluents of DMg(OH)2PMg(OH)2 bleaching process than that in the effluents of DNaOHPNaOH bleaching process, which illustrated that DMg(OH)2PMg(OH)2 bleaching process had higher bleaching efficiency than DNaOHPNaOH bleaching process. The influence of Mg(OH)2 replacing NaOH was more obvious when it was used in the bleaching process of P stage than that in the D stage. The replacement of NaOH with Mg(OH)2 in D Stage can lower the dosage of alkali used in the following P stage.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 152
Author(s):  
Wenjie Gao ◽  
Qinxiang Fang ◽  
Haiyang Yan ◽  
Xinlai Wei ◽  
Ke Wu

Lithium carbonate is an important chemical raw material that is widely used in many contexts. The preparation of lithium carbonate by acid roasting is limited due to the large amounts of low-value sodium sulfate waste salts that result. In this research, bipolar membrane electrodialysis (BMED) technology was developed to treat waste sodium sulfate containing lithium carbonate for conversion of low-value sodium sulfate into high-value sulfuric acid and sodium hydroxide. Both can be used as raw materials in upstream processes. In order to verify the feasibility of the method, the effects of the feed salt concentration, current density, flow rate, and volume ratio on the desalination performance were determined. The conversion rate of sodium sulfate was close to 100%. The energy consumption obtained under the best experimental conditions was 1.4 kWh·kg−1. The purity of the obtained sulfuric acid and sodium hydroxide products reached 98.32% and 98.23%, respectively. Calculated under the best process conditions, the total process cost of BMED was estimated to be USD 0.705 kg−1 Na2SO4, which is considered low and provides an indication of the potential economic and environmental benefits of using applying this technology.


Author(s):  
F. Mostefa ◽  
Nasr Eddine Bouhamou ◽  
H.A. Mesbah ◽  
Salima Aggoun ◽  
D. Mekhatria

This work aims to study the feasibility of making a geopolymer cement based on dredged sediments, from the Fergoug dam (Algeria) and to evaluate their construction potential particularly interesting in the field of special cementitious materials. These sediments due to their mineralogical composition as aluminosilicates; are materials that can be used after heat treatment. Sedimentary clays were characterized before and after calcination by X-ray diffraction, ATG / ATD, spectroscopy (FTIR) and XRF analysis. The calcination was carried out on the raw material sieved at 80 μm for a temperature of 750 ° C, for 3.4 and 5 hours. The reactivity of the calcined products was measured using isothermal calorimetric analysis (DSC) on pastes prepared by mixing an alkaline solution of sodium hydroxide (NaOH) 8 M in an amount allowing to have a Na / Al ratio close to 1 (1: 1). Also, cubic mortar samples were prepared with a ratio L / S: 0.8, sealed and cured for 24 hours at 60 ° C and then at room temperature until the day they were submited to mechanical testing. to check the extent of geopolymerization. The results obtained allowed to optimize the calcination time of 5 hours for a better reactivity of these sediments, and a concentration of 8M of sodium hydroxide and more suitable to have the best mechanical performances.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Negisa Darajeh ◽  
Azni Idris ◽  
Paul Truong ◽  
Astimar Abdul Aziz ◽  
Rosenani Abu Bakar ◽  
...  

Palm oil mill effluent (POME), a pollutant produced by the palm oil industry, was treated by the Vetiver system technology (VST). This technology was applied for the first time to treat POME in order to decrease biochemical oxygen demand (BOD) and chemical oxygen demand (COD). In this study, two different concentrations of POME (low and high) were treated with Vetiver plants for 2 weeks. The results showed that Vetiver was able to reduce the BOD up to 90% in low concentration POME and 60% in high concentration POME, while control sets (without plant) only was able to reduce 15% of BOD. The COD reduction was 94% in low concentration POME and 39% in high concentration POME, while control just shows reduction of 12%. Morphologically, maximum root and shoot lengths were 70 cm, the number of tillers and leaves was 344 and 86, and biomass production was 4.1 kg m−2. These results showed that VST was effective in reducing BOD and COD in POME. The treatment in low concentration was superior to the high concentration. Furthermore, biomass of plant can be considered as a promising raw material for biofuel production while high amount of biomass was generated in low concentration of POME.


2009 ◽  
Vol 1216 ◽  
Author(s):  
Masataka Murahara ◽  
Kazuichi Seki ◽  
Yuji Sato ◽  
Etsuo Fujiwara

AbstractSodium metal reacts with water explosively to generate hydrogen. Therefore, sodium metal can have an important role as a hydrogen storage material. Seawater contains water most and sodium second. Seawater is electrolyzed by offshore wind or solar cell power generation to produce sodium; which is transported to a thermoelectric power plant on land and then is reacted with water to produce hydrogen for electric power generation. Sodium hydroxide, a by-product, is used as a raw material for soda industries. In the sodium production process, many by-products such as fresh water, magnesium, sodium hydroxide, hydrochloric acid, and sulfuric acid are produced. Thus, sodium metal is an economical, renewable, and sustainable fuel that discharges neither CO2 nor radioactivity.


Author(s):  
Barbara Widera

The paper addresses the topic of nature-based solutions applied in the architectural and urban design. These ideas are analyzed in the context of the opportunities they create for the humanity in terms of the sustainable growth and environmental protection. Nature-based solutions are inherently taken from nature. The first part of the paper presents their tremendous potential to be energy and resource-efficient, and resilient to change. In the second part of the research particular concepts driven from nature (copied form nature or inspired by nature) proposed for the buildings and cities are described and evaluated. The author discusses their functional usefulness, spatial appropriateness, adaptation to local conditions, end-user comfort, environmental benefits and the possibility of duplication. Nature-based solutions applied in urban planning can make cities more climate resilient and contribute to ecosystems restoration. The paper describes how sustainable urbanization can stimulate economic growth, make cities more attractive and enhance well-being of the inhabitants. It is also explained how particular buildings can benefit from the concepts driven from nature e.g. by increasing their energy efficiency and performance in terms of raw material consumption. In purpose to properly response to the climate challenge, humanity has to establish a new kind of partnership with nature. Using nature-based solutions should be considered as an important part of this approach. The concepts presented in this paper show some of the most promising options, such as integration of living systems with built systems and innovative combinations of soft and hard engineering. In conclusion some of the most promising nature-based solutions for climate resilient buildings and cities are indicated


2018 ◽  
Vol 33 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Dan Huo ◽  
Qiulin Yang ◽  
Guigan Fang ◽  
Qiujuan Liu ◽  
Chuanling Si ◽  
...  

Abstract Eucalyptus residues from pulp mill were pretreated with aqueous ammonia soaking (AAS) method to improve the efficiency of enzymatic hydrolysis. The optimized condition of AAS was obtained by response surface methodology. Meanwhile, hydrogen peroxide was introduced into the AAS system to modify the AAS pretreatment (AASP). The results showed that a fermentable sugar yield of 64.96 % was obtained when the eucalypt fibers were pretreated at the optimal conditions, with 80 % of ammonia (w/w) for 11 h and keeping the temperature at 90 °C. In further research it was found that the addition of H2O2 to the AAS could improve the pretreatment efficiency. The delignification rate and enzymatic digestibility were increased to 64.49 % and 73.85 %, respectively, with 5 % of hydrogen peroxide being used. FTIR analysis indicated that most syringyl and guaiacyl lignin and a trace amount of xylan were degraded and dissolved during the AAS and AASP pretreatments. The CrI of the raw material was increased after AAS and AASP pretreatments, which was attributed to the removal of amorphous portion. SEM images showed that microfibers were separated and explored from the initial fiber structure after AAS pretreatment, and the AASP method could improve the destructiveness of the fiber surface.


Sign in / Sign up

Export Citation Format

Share Document