The evolution of massive binary systems with shock fronts of colliding winds

1997 ◽  
Vol 21 (3) ◽  
pp. 296-303
Author(s):  
Run-qian Huang
2006 ◽  
Vol 2 (S240) ◽  
pp. 198-201
Author(s):  
D. Falceta-Gonçalves ◽  
Z. Abraham ◽  
V. Jatenco-Pereira

AbstractWhen the winds of two massive stars orbiting each other collide, an interaction zone is created consisting of two shock fronts at both sides of a contact surface. During the cooling process, elements may recombine generating spectral lines. These lines may be Doppler shifted, as the gas stream flows over the interaction zone. To calculate the stream velocity projected into the line of sight we use a simplified conical geometry for the shock fronts and, to determine the synthetic line profile, we have to sum the amount of emitting gas elements with the same Doppler shifted velocity. We show that the stellar mass loss rates and wind velocities, and the orbital inclination and eccentricity, are the main parameters on this physical process. By comparing observational data to the synthetic line profiles it is possible to determine these parameters. We tested this process to Brey 22 WR binary system, and applied to the enigmatic object of η Carinae.


1994 ◽  
Vol 271 (3) ◽  
pp. 667-675 ◽  
Author(s):  
S. A. Zhekov ◽  
Francesco Palla ◽  
A. V. Myasnikov
Keyword(s):  
X Ray ◽  

1979 ◽  
Vol 83 ◽  
pp. 409-414
Author(s):  
D. Vanbeveren ◽  
J.P. De Grève ◽  
C. de Loore ◽  
E.L. van Dessel

It is generally accepted that massive (and thus luminous) stars lose mass by stellar wind, driven by radiation force (Lucy and Solomon, 1970; Castor et al. 1975). For the components of massive binary systems, rotational and gravitational effects may act together with the radiation force so as to increase the mass loss rate. Our intention here is to discuss the influence of a stellar wind mass loss on the evolution of massive close binaries. During the Roche lobe overflow phase, mass and angular momentum can leave the system. Possible reasons for mass loss from the system are for example the expansion of the companion due to accretion of the material lost by the mass losing star (Kippenhahn and Meyer-Hofmeister, 1977) or the fact that due to the influence of the radiation force in luminous stars, mass will be lost over the whole surface of the star and not any longer through a possible Lagrangian point as in the case of classical Roche lobe overflow (Vanbeveren, 1978). We have therefore investigated the influence of both processes on binary evolution. Our results are applied to 5 massive X-ray binaries with a possible implication for the existence of massive Wolf Rayet stars with a very close invisible compact companion. A more extended version of this talk is published in Astronomy and Astrophysics (Vanbeveren et al. 1978; Vanbeveren and De Grève, 1978). Their results will be briefly reviewed.


1995 ◽  
Vol 163 ◽  
pp. 438-449
Author(s):  
Richard L. White ◽  
Wan Chen

The shock between the colliding winds in binary systems containing two massive stars accelerates particles to relativistic energies. These energetic particles can produce observable non-thermal radiation from the radio to γ-rays. The important physical processes in such systems are very similar to those we have proposed for non-thermal emissions from single hot stars, which have shocks generated by instabilities in the radiatively driven stellar winds. This paper discusses the theory and observations of non-thermal radiation in the radio, X-ray, and γ-ray regions from both single stars and massive binaries. Similarities and differences between the two types of systems are outlined. We discuss two important physical effects that apparently have been neglected in previous theoretical work on colliding wind binaries.


Sign in / Sign up

Export Citation Format

Share Document