thermal radio
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 11)

H-INDEX

25
(FIVE YEARS 1)

Author(s):  
M Araya ◽  
N Hurley-Walker ◽  
S Quirós-Araya

Abstract Non-thermal radio emission is detected in the region of the gamma-ray source FHES J1723.5 − 0501. The emission has an approximately circular shape 0.8○ in diameter. The observations confirm its nature as a new supernova remnant, We derive constraints on the source parameters using the radio data and gamma-ray observations of the region. The distance to the object is possibly in the range 1.4–3.5 kpc. An SNR age of the order of 10 kyr is compatible with the radio and GeV features, but an older or younger SNR cannot be ruled out. A simple one-zone leptonic model naturally explains the multi-wavelength non-thermal fluxes of the source at its location outside the Galactic plane.


2021 ◽  
Author(s):  
Dominique Meyer ◽  
Martin Pohl ◽  
Mykola Petrov ◽  
Lidia Oskinova

2021 ◽  
Vol 502 (4) ◽  
pp. 5340-5355
Author(s):  
D M-A Meyer ◽  
M Pohl ◽  
M Petrov ◽  
L Oskinova

ABSTRACT A signification fraction of Galactic massive stars (${\ge}8\, \rm M_{\odot }$) are ejected from their parent cluster and supersonically sail away through the interstellar medium (ISM). The winds of these fast-moving stars blow asymmetric bubbles thus creating a circumstellar environment in which stars eventually die with a supernova explosion. The morphology of the resulting remnant is largely governed by the circumstellar medium of the defunct progenitor star. In this paper, we present 2D magneto-hydrodynamical simulations investigating the effect of the ISM magnetic field on the shape of the supernova remnants of a $35\, \mathrm{M}_{\odot }$ star evolving through a Wolf–Rayet phase and running with velocity 20 and $40\, \rm km\, \rm s^{-1}$, respectively. A $7\, \mu \rm G$ ambient magnetic field is sufficient to modify the properties of the expanding supernova shock front and in particular to prevent the formation of filamentary structures. Prior to the supernova explosion, the compressed magnetic field in the circumstellar medium stabilizes the wind/ISM contact discontinuity in the tail of the wind bubble. A consequence is a reduced mixing efficiency of ejecta and wind materials in the inner region of the remnant, where the supernova shock wave propagates. Radiative transfer calculations for synchrotron emission reveal that the non-thermal radio emission has characteristic features reflecting the asymmetry of exiled core-collapse supernova remnants from Wolf–Rayet progenitors. Our models are qualitatively consistent with the radio appearance of several remnants of high-mass progenitors, namely the bilateral G296.5+10.0 and the shell-type remnants CTB109 and Kes 17, respectively.


2020 ◽  
Vol 499 (1) ◽  
pp. L72-L76
Author(s):  
P Leto ◽  
C Trigilio ◽  
C S Buemi ◽  
F Leone ◽  
I Pillitteri ◽  
...  

ABSTRACT The non-thermal radio emission of main-sequence early-type stars is a signature of stellar magnetism. We present multiwavelength (1.6–16.7 GHz) ATCA measurements of the early-type magnetic star ρ OphC, which is a flat-spectrum non-thermal radio source. The ρ OphC radio emission is partially circularly polarized with a steep spectral dependence: the fraction of polarized emission is about $60{{\ \rm per\ cent}}$ at the lowest frequency sub-band (1.6 GHz) while is undetected at 16.7 GHz. This is clear evidence of coherent Auroral Radio Emission (ARE) from the ρ OphC magnetosphere. Interestingly, the detection of the ρ OphC’s ARE is not related to a peculiar rotational phase. This is a consequence of the stellar geometry, which makes the strongly anisotropic radiation beam of the amplified radiation always pointed towards Earth. The circular polarization sign evidences mainly amplification of the ordinary mode of the electromagnetic wave, consistent with a maser amplification occurring within dense regions. This is indirect evidence of the plasma evaporation from the polar caps, a phenomenon responsible for the thermal X-ray aurorae. ρ OphC is not the first early-type magnetic star showing the O-mode dominated ARE but is the first star with the ARE always on view.


2020 ◽  
Vol 500 (2) ◽  
pp. 2620-2626
Author(s):  
Jun Yang ◽  
Zsolt Paragi ◽  
Emanuele Nardini ◽  
Willem A Baan ◽  
Lulu Fan ◽  
...  

ABSTRACT When a black hole accretes close to the Eddington limit, the astrophysical jet is often accompanied by radiatively driven, wide-aperture and mildly relativistic winds. Powerful winds can produce significant non-thermal radio emission via shocks. Among the nearby critical accretion quasars, PDS 456 has a very massive black hole (about 1 billion solar masses), shows a significant star-forming activity (about 70 solar masses per year), and hosts exceptionally energetic X-ray winds (power up to 20 per cent of the Eddington luminosity). To probe the radio activity in this extreme accretion and feedback system, we performed very long baseline interferometric (VLBI) observations of PDS 456 at 1.66 GHz with the European VLBI Network and the enhanced Multi-Element Remotely Linked Interferometry Network. We find a rarely seen complex radio-emitting nucleus consisting of a collimated jet and an extended non-thermal radio emission region. The diffuse emission region has a size of about 360 pc and a radio luminosity about three times higher than that of the nearby extreme starburst galaxy Arp 220. The powerful nuclear radio activity could result either from a relic jet with a peculiar geometry (nearly along the line of sight) or more likely from diffuse shocks formed naturally by the existing high-speed winds impacting on high-density star-forming regions.


2020 ◽  
Vol 496 (3) ◽  
pp. 3128-3141 ◽  
Author(s):  
A Rodríguez-Kamenetzky ◽  
C Carrasco-González ◽  
J M Torrelles ◽  
W H T Vlemmings ◽  
L F Rodríguez ◽  
...  

ABSTRACT The massive star-forming region W75N (B) is thought to host a cluster of massive protostars (VLA 1, VLA 2, and VLA 3) undergoing different evolutionary stages. In this work, we present radio continuum data with the highest sensitivity and angular resolution obtained to date in this region, using the VLA-A and covering a wide range of frequencies (4–48 GHz), which allowed us to study the morphology and the nature of the emission of the different radio continuum sources. We also performed complementary studies with multi-epoch Very Large Array (VLA) data and Atacama Large Millimeter Array (ALMA) archive data at 1.3 mm wavelength. We find that VLA 1 is driving a thermal radio jet at scales of ≈0.1 arcsec (≈130 au), but also shows signs of an incipient hypercompact H ii region at scales of ≲1 arcsec (≲1300 au). VLA 3 is also driving a thermal radio jet at scales of a few tenths of arcsec (few hundred of au). We conclude that this jet is shock exciting the radio continuum sources Bc and VLA 4 (obscured Herbig–Haro objects), which show proper motions moving outward from VLA 3 at velocities of ≈112–118 km s−1. We have also detected three new weak radio continuum sources, two of them associated with millimetre continuum cores observed with ALMA, suggesting that these two sources are also embedded young stellar objects in this massive star-forming region.


Author(s):  
S. W. Duchesne ◽  
M. Johnston-Hollitt ◽  
Z. Zhu ◽  
R. B. Wayth ◽  
J. L. B. Line

Abstract Diffuse, non-thermal emission in galaxy clusters is increasingly being detected in low-frequency radio surveys and images. We present a new diffuse, steep-spectrum, non-thermal radio source within the cluster Abell 1127 found in survey data from the Murchison Widefield Array (MWA). We perform follow-up observations with the ‘extended’ configuration MWA Phase II with improved resolution to better resolve the source and measure its low-frequency spectral properties. We use archival Very Large Array S-band data to remove the discrete source contribution from the MWA data, and from a power law model fit we find a spectral index of –1.83±0.29 broadly consistent with relic-type sources. The source is revealed by the Giant Metrewave Radio Telescope at 150 MHz to have an elongated morphology, with a projected linear size of 850 kpc as measured in the MWA data. Using Chandra observations, we derive morphological estimators and confirm quantitatively that the cluster is in a disturbed dynamical state, consistent with the majority of phoenices and relics being hosted by merging clusters. We discuss the implications of relying on morphology and low-resolution imaging alone for the classification of such sources and highlight the usefulness of the MHz to GHz radio spectrum in classifying these types of emission. Finally, we discuss the benefits and limitations of using the MWA Phase II in conjunction with other instruments for detailed studies of diffuse, steep-spectrum, non-thermal radio emission within galaxy clusters.


Sign in / Sign up

Export Citation Format

Share Document