Voltage-dependent calcium channel subtypes controlling somatic substance P release in the peripheral nervous system

Author(s):  
Louise M. Harding ◽  
David J. Beadle ◽  
Bermudez Isabel
1999 ◽  
Vol 268 (2) ◽  
pp. 77-80 ◽  
Author(s):  
Masahiko Kase ◽  
Shingo Kakimoto ◽  
Satoru Sakuma ◽  
Takeshi Houtani ◽  
Hitoshi Ohishi ◽  
...  

2011 ◽  
Vol 115 (1) ◽  
pp. 153-164 ◽  
Author(s):  
Toshifumi Takasusuki ◽  
Tony L. Yaksh

Background The authors investigated the role of different voltage-sensitive calcium channels expressed at presynaptic afferent terminals in substance P release and on nociceptive behavior evoked by intraplantar formalin by examining the effects of intrathecally delivered N- (ziconotide), T- (mibefradil), and L-type voltage-sensitive calcium channel blockers (diltiazem and verapamil). Methods Rats received intrathecal pretreatment with saline or doses of morphine, ziconotide, mibefradil, diltiazem, or verapamil. The effect of these injections upon flinching evoked by intraplantar formalin (5%, 50 μl) was quantified. To assess substance P release, the incidence of neurokinin-1 receptor internalization in the ipsilateral and contralateral lamina I was determined in immunofluorescent-stained tissues. Results Intrathecal morphine (20 μg), ziconotide (0.3, 0.6, and 1 μg), mibefradil (100 μg, but not 50 μg), diltiazem (500 μg, but not 300 μg), and verapamil (200 μg, but not 50 and 100 μg) reduced paw flinching in phase 2 compared with vehicle control (P < 0.05), with no effect on phase 1. Ziconotide (0.3, 0.6, and 1 μg) and morphine (20 μg) significantly inhibited neurokinin-1 receptor internalization (P < 0.05), but mibefradil, diltiazem, and verapamil at the highest doses had no effect. Conclusion These results emphasize the role in vivo of N-type but not T- and L-type voltage-sensitive calcium channel blockers in mediating the stimulus-evoked substance P release from small primary afferents and suggest that T- and L-type voltage-sensitive calcium channel blockers exert antihyperalgesic effects by an action on other populations of afferents or mechanisms involving postsynaptic excitability.


1988 ◽  
Vol 22 (1-2) ◽  
pp. 117 ◽  
Author(s):  
C.A. Maggi ◽  
P. Santicioli ◽  
P. Geppetti ◽  
R. Patacchini ◽  
E. Del Bianco ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document