Co-localization of L-type voltage dependent calcium channel alpha 1D subunit (Cav1.3) and calbindin (CB) in the mouse central nervous system

2014 ◽  
Vol 561 ◽  
pp. 80-85 ◽  
Author(s):  
Jie Hua Xu ◽  
Zhen Bang Yang ◽  
Hui Wang ◽  
Feng-Ru Tang
1999 ◽  
Vol 268 (2) ◽  
pp. 77-80 ◽  
Author(s):  
Masahiko Kase ◽  
Shingo Kakimoto ◽  
Satoru Sakuma ◽  
Takeshi Houtani ◽  
Hitoshi Ohishi ◽  
...  

Author(s):  
Estíbaliz González de San Román ◽  
Iván Manuel ◽  
Catherine Ledent ◽  
Jerold Chun ◽  
Fernando Rodríguez de Fonseca ◽  
...  

2003 ◽  
Vol 77 (7) ◽  
pp. 4383-4388 ◽  
Author(s):  
Brian P. Schlitt ◽  
Matthew Felrice ◽  
Mary Lou Jelachich ◽  
Howard L. Lipton

ABSTRACT Theiler's murine encephalomyelitis virus (TMEV) persists in the mouse central nervous system principally in macrophages, and infected macrophages in culture undergo apoptosis. We have detected abundant apoptotic cells in perivascular cuffs and inflammatory, demyelinating lesions of SJL mice chronically infected with TMEV. T cells comprised 74% of apoptotic cells, while 8% were macrophages, 0.6% were astrocytes, and ∼17% remained unidentified. In situ hybridization revealed viral RNA in ∼1% of apoptotic cells.


1988 ◽  
Vol 137 (1) ◽  
pp. 1-11
Author(s):  
Susan E. Acklin

A study has been made of the electrical connections between touch sensory (T) neurones in the leech central nervous system (CNS) which display remarkable double rectification: depolarization spreads in both directions although hyperpolarization spreads poorly. Tests were made to determine whether this double rectification was a property of the junctions themselves or whether it resulted from changes in the length constants of processes intervening between the cell body and the junctions. Following trains of action potentials, T cells and their fine processes within the neuropile became hyperpolarized through the activity of an electrogenie sodium pump. When any T cell was hyperpolarized by 25 mV by repetitive stimulation, hyperpolarization failed to spread to the T cells to which it was electrically coupled. Further evidence for double rectification of junctions linking T cells was provided by experiments in which Cl− was injected electrophoretically. Cl− injection into one T cell caused inhibitory potentials recorded in it to become reversed. After a delay, Cl− spread to reverse IPSPs in the coupled T cell. Movement of Cl−, like current flow, was dependent on membrane potential. When the T cell into which Cl− was injected was kept hyperpolarized, Cl− failed to move into the adjacent T cell. Upon release of the hyperpolarization in the injected T cell, Cl− moved and reversed IPSPs in the coupled T cell. Together these results indicate that the gating properties of channels linking T cells are voltage-dependent, such that depolarization of either cell allows channels to open whereas hyperpolarization causes them to close.


Sign in / Sign up

Export Citation Format

Share Document