Statistical mechanics and stability of macromolecules. Application to bond disruption, base pair separation, melting, and drug dissociation of the DNA double helix

1997 ◽  
Vol 43 (1) ◽  
pp. 194
Author(s):  
Axel Walter
2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Shu-ichi Nakano ◽  
Masayuki Fujii ◽  
Naoki Sugimoto

Unnatural nucleosides have been explored to expand the properties and the applications of oligonucleotides. This paper briefly summarizes nucleic acid analogs in which the base is modified or replaced by an unnatural stacking group for the study of nucleic acid interactions. We also describe the nucleoside analogs of a base pair-mimic structure that we have examined. Although the base pair-mimic nucleosides possess a simplified stacking moiety of a phenyl or naphthyl group, they can be used as a structural analog of Watson-Crick base pairs. Remarkably, they can adopt two different conformations responding to their interaction energies, and one of them is the stacking conformation of the nonpolar aromatic group causing the site-selective flipping of the opposite base in a DNA double helix. The base pair-mimic nucleosides can be used to study the mechanism responsible for the base stacking and the flipping of bases out of a nucleic acid duplex.


Nature ◽  
1979 ◽  
Vol 280 (5720) ◽  
pp. 294-298 ◽  
Author(s):  
A. V. Vologodskii ◽  
V. V. Anshelevich ◽  
A. V. Lukashin ◽  
M. D. Frank-Kamenetskii

2018 ◽  
Author(s):  
Stefanos K. Nomidis ◽  
Enrico Skoruppa ◽  
Enrico Carlon ◽  
John F. Marko

AbstractThe simplest model of DNA mechanics describes the double helix as a continuous rod with twist and bend elasticity. Recent work has discussed the relevance of a little-studied coupling G between twisting and bending, known to arise from the groove asymmetry of the DNA double helix. Here, the effect of G on the statistical mechanics of long DNA molecules subject to applied forces and torques is investigated. We present a perturbative calculation of the effective torsional stiffness Ceff for small twist-bend coupling. We find that the “bare” G is “screened” by thermal fluctuations, in the sense that the low-force, long-molecule effective free energy is that of a model with G = 0, but with long-wavelength bending and twisting rigidities that are shifted by G-dependent amounts. Using results for torsional and bending rigidities for freely-fluctuating DNA, we show how our perturbative results can be extended to a nonperturbative regime. These results are in excellent agreement with numerical calculations for Monte Carlo “triad” and molecular dynamics “oxDNA” models, characterized by different degrees of coarse-graining, validating the perturbative and non-perturbative analyses. While our theory is in generally-good quantitative agreement with experiment, the predicted torsional stiffness does systematically deviate from experimental data, suggesting that there are as-yet-uncharacterized aspects of DNA twisting-stretching mechanics relevant to low-force, long-molecule mechanical response, which are not captured by widely-used coarse-grained models.


ChemBioChem ◽  
2013 ◽  
Vol 14 (9) ◽  
pp. 1072-1074 ◽  
Author(s):  
Pawan Kumar ◽  
Pawan K. Sharma ◽  
Charlotte S. Madsen ◽  
Michael Petersen ◽  
Poul Nielsen

PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0163361 ◽  
Author(s):  
Lei Tian ◽  
Zhenfeng Zhang ◽  
Hanqian Wang ◽  
Mohan Zhao ◽  
Yuhui Dong ◽  
...  

2017 ◽  
Vol 13 (4) ◽  
pp. e1005463 ◽  
Author(s):  
Viveca Lindahl ◽  
Alessandra Villa ◽  
Berk Hess

Author(s):  
D.P. Bazett-Jones ◽  
F.P. Ottensmeyer

Dark field electron microscopy has been used for the study of the structure of individual macromolecules with a resolution to at least the 5Å level. The use of this technique has been extended to the investigation of structure of interacting molecules, particularly the interaction between DNA and fish protamine, a class of basic nuclear proteins of molecular weight 4,000 daltons.Protamine, which is synthesized during spermatogenesis, binds to chromatin, displaces the somatic histones and wraps up the DNA to fit into the small volume of the sperm head. It has been proposed that protamine, existing as an extended polypeptide, winds around the minor groove of the DNA double helix, with protamine's positively-charged arginines lining up with the negatively-charged phosphates of DNA. However, viewing protamine as an extended protein is inconsistent with the results obtained in our laboratory.


Sign in / Sign up

Export Citation Format

Share Document