scholarly journals Use of Nucleic Acid Analogs for the Study of Nucleic Acid Interactions

2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Shu-ichi Nakano ◽  
Masayuki Fujii ◽  
Naoki Sugimoto

Unnatural nucleosides have been explored to expand the properties and the applications of oligonucleotides. This paper briefly summarizes nucleic acid analogs in which the base is modified or replaced by an unnatural stacking group for the study of nucleic acid interactions. We also describe the nucleoside analogs of a base pair-mimic structure that we have examined. Although the base pair-mimic nucleosides possess a simplified stacking moiety of a phenyl or naphthyl group, they can be used as a structural analog of Watson-Crick base pairs. Remarkably, they can adopt two different conformations responding to their interaction energies, and one of them is the stacking conformation of the nonpolar aromatic group causing the site-selective flipping of the opposite base in a DNA double helix. The base pair-mimic nucleosides can be used to study the mechanism responsible for the base stacking and the flipping of bases out of a nucleic acid duplex.

2004 ◽  
Vol 69 (4) ◽  
pp. 715-747 ◽  
Author(s):  
Miroslav Fojta

This review is devoted to applications of mercury electrodes in the electrochemical analysis of nucleic acids and in studies of DNA structure and interactions. At the mercury electrodes, nucleic acids yield faradaic signals due to redox processes involving adenine, cytosine and guanine residues, and tensammetric signals due to adsorption/desorption of polynucleotide chains at the electrode surface. Some of these signals are highly sensitive to DNA structure, providing information about conformation changes of the DNA double helix, formation of DNA strand breaks as well as covalent or non-covalent DNA interactions with small molecules (including genotoxic agents, drugs, etc.). Measurements at mercury electrodes allow for determination of small quantities of unmodified or electrochemically labeled nucleic acids. DNA-modified mercury electrodes have been used as biodetectors for DNA damaging agents or as detection electrodes in DNA hybridization assays. Mercury film and solid amalgam electrodes possess similar features in the nucleic acid analysis to mercury drop electrodes. On the contrary, intrinsic (label-free) DNA electrochemical responses at other (non-mercury) solid electrodes cannot provide information about small changes of the DNA structure. A review with 188 references.


2009 ◽  
Vol 42 (1) ◽  
pp. 41-81 ◽  
Author(s):  
Tali E. Haran ◽  
Udayan Mohanty

AbstractShort runs of adenines are a ubiquitous DNA element in regulatory regions of many organisms. When runs of 4–6 adenine base pairs (‘A-tracts’) are repeated with the helical periodicity, they give rise to global curvature of the DNA double helix, which can be macroscopically characterized by anomalously slow migration on polyacrylamide gels. The molecular structure of these DNA tracts is unusual and distinct from that of canonical B-DNA. We review here our current knowledge about the molecular details of A-tract structure and its interaction with sequences flanking them of either side and with the environment. Various molecular models were proposed to describe A-tract structure and how it causes global deflection of the DNA helical axis. We review old and recent findings that enable us to amalgamate the various findings to one model that conforms to the experimental data. Sequences containing phased repeats of A-tracts have from the very beginning been synonymous with global intrinsic DNA bending. In this review, we show that very often it is the unique structure of A-tracts that is at the basis of their widespread occurrence in regulatory regions of many organisms. Thus, the biological importance of A-tracts may often be residing in their distinct structure rather than in the global curvature that they induce on sequences containing them.


2019 ◽  
Vol 116 (45) ◽  
pp. 22471-22477 ◽  
Author(s):  
Francesco Colizzi ◽  
Cibran Perez-Gonzalez ◽  
Remi Fritzen ◽  
Yaakov Levy ◽  
Malcolm F. White ◽  
...  

The opening of a Watson–Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix.


2018 ◽  
Vol 24 (35) ◽  
pp. 8883-8892 ◽  
Author(s):  
Xiurong Guo ◽  
Peter Leonard ◽  
Sachin A. Ingale ◽  
Jiang Liu ◽  
Hui Mei ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Ol'ha O. Brovarets' ◽  
Alona Muradova ◽  
Dmytro M. Hovorun

For the first time, at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory, a comprehensive quantum-mechanical investigation of the physico-chemical mechanism of the tautomeric wobblization of the four biologically-important G·C nucleobase pairs by the participation of the monomers in rare, in particular mutagenic, tautomeric forms (marked with an asterisk) was provided. These novel tautomeric transformations (wobblization or shifting of the bases within the pair) are intrinsically inherent properties of the G·C nucleobase pairs. In this study, we have obtained intriguing results, lying far beyond the existing representations. Thus, it was shown that Löwdin's G*·C*(WC) base pair does not tautomerize according to the wobblization mechanism. Tautomeric wobblization of the G*·C*(rWC) (relative Gibbs free energy ΔG = 0.00/relative electronic energy ΔE = 0.00 kcal·mol−1) (“r”—means the configuration of the base pair in reverse position; “WC”—the classic Watson-Crick configuration) and G*t·C*(H) (ΔG = −0.19/ΔE = 0.29 kcal·mol−1) (“H”—Hoogsteen configuration;”t” denotes the O6H hydroxyl group in the trans position) base pairs are preceded by the stages of the base pairs tautomerization by the single proton transfer (SPT). It was established that the G*t·C*(rH) (ΔG = 2.21/ΔE = 2.81 kcal·mol−1) base pair can be wobbled through two different pathways via the traditional one-stage mechanism through the TSs, which are tight G+·C− ion pairs, stabilized by the participation of only two intermolecular H-bonds. It was found out that the G·C base pair is most likely incorporated into the DNA/RNA double helix with parallel strands in the G*·C*(rWC), G·C*(rwwc), and G*·C(rwwc) (“w”—wobble configuration of the pair) tautomeric forms, which are in rapid tautomeric equilibrium with each other. It was proven that the G*·C*(rWC) nucleobase pair is also in rapid tautomeric equilibrium with the eight tautomeric forms of the so-called Levitt base pair. It was revealed that a few cases of tautomerization via the DPT of the nucleobase pairs by the participation of the C8H group of the guanine had occurred. The biological role of the obtained results was also made apparent.


2016 ◽  
Vol 56 (4) ◽  
pp. 1141-1145 ◽  
Author(s):  
Vladislav Kulikov ◽  
Naomi A. B. Johnson ◽  
Andrew J. Surman ◽  
Marie Hutin ◽  
Sharon M. Kelly ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 737
Author(s):  
Udo Heinemann ◽  
Yvette Roske

In nature and in the test tube, nucleic acids occur in many different forms. Apart from single-stranded, coiled molecules, DNA and RNA prefer to form helical arrangements, in which the bases are stacked to shield their hydrophobic surfaces and expose their polar edges. Focusing on double helices, we describe the crucial role played by symmetry in shaping DNA and RNA structure. The base pairs in nucleic-acid double helices display rotational pseudo-symmetry. In the Watson–Crick base pairs found in naturally occurring DNA and RNA duplexes, the symmetry axis lies in the base-pair plane, giving rise to two different helical grooves. In contrast, anti-Watson–Crick base pairs have a dyad axis perpendicular to the base-pair plane and identical grooves. In combination with the base-pair symmetry, the syn/anti conformation of paired nucleotides determines the parallel or antiparallel strand orientation of double helices. DNA and RNA duplexes in nature are exclusively antiparallel. Watson–Crick base-paired DNA or RNA helices display either right-handed or left-handed helical (pseudo-) symmetry. Genomic DNA is usually in the right-handed B-form, and RNA double helices adopt the right-handed A-conformation. Finally, there is a higher level of helical symmetry in superhelical DNA in which B-form double strands are intertwined in a right- or left-handed sense.


Author(s):  
A. A. Travers ◽  
G. Muskhelishvili ◽  
J. M. T. Thompson

The digital linear coding carried by the base pairs in the DNA double helix is now known to have an important component that acts by altering, along its length, the natural shape and stiffness of the molecule. In this way, one region of DNA is structurally distinguished from another, constituting an additional form of encoded information manifest in three-dimensional space. These shape and stiffness variations help in guiding and facilitating the DNA during its three-dimensional spatial interactions. Such interactions with itself allow communication between genes and enhanced wrapping and histone–octamer binding within the nucleosome core particle. Meanwhile, interactions with proteins can have a reduced entropic binding penalty owing to advantageous sequence-dependent bending anisotropy. Sequence periodicity within the DNA, giving a corresponding structural periodicity of shape and stiffness, also influences the supercoiling of the molecule, which, in turn, plays an important facilitating role. In effect, the super-helical density acts as an analogue regulatory mode in contrast to the more commonly acknowledged purely digital mode. Many of these ideas are still poorly understood, and represent a fundamental and outstanding biological question. This review gives an overview of very recent developments, and hopefully identifies promising future lines of enquiry.


Sign in / Sign up

Export Citation Format

Share Document