Histological demonstration of voltage dependent calcium channels on calcitonin gene-related peptide-immunoreactive nerve fibres in the mouse knee joint

2001 ◽  
Vol 312 (3) ◽  
pp. 133-136 ◽  
Author(s):  
Stefan Just ◽  
Carsten Leipold-Büttner ◽  
Bernd Heppelmann
1996 ◽  
Vol 76 (6) ◽  
pp. 3740-3749 ◽  
Author(s):  
V. Neugebauer ◽  
H. Vanegas ◽  
J. Nebe ◽  
P. Rumenapp ◽  
H. G. Schaible

1. The present study addresses the involvement of voltage-dependent calcium channels of the N and L type in the spinal processing of innocuous and noxious input from the knee joint, both under normal conditions and under inflammatory conditions in which spinal cord neurons become hyperexcitable. In 30 anesthetized rats, extracellular recordings were performed from single dorsal horn neurons in segments 1–4 of the lumbar spinal cord. All neurons had receptive fields in the ipsilateral knee joint. In 22 rats, an inflammation was induced in the ipsilateral knee joint by kaolin and carrageenan 4–16 h before the recordings. The antagonist at N-type calcium channels, omega-conotoxin GVIA (omega-CTx GVIA), was administered topically in solution to the dorsal surface of the spinal cord at the appropriate spinal segments in 6 rats with normal joints and in 12 rats with inflamed knee joints. The antagonist at L-type channels, nimodipine, was administered topically in 5 rats with normal joints and in 11 rats with inflamed knee joints. In another five rats with inflamed joints, antagonists at L-type calcium channels (diltiazem and nimodipine) and omega-CTx GVIA were administered ionophoretically with multibarrel electrodes close to the neurons recorded. 2. The topical administration of omega-CTx GVIA to the spinal cord reduced the responses to both innocuous and noxious pressure applied to the knee joint in a sample of 11 neurons with input from the normal joint and in a sample of 16 neurons with input from the inflamed joint (hyperexcitable neurons). The responses were decreased to approximately 65% of the predrug values within administration times of 30 min. A similar reduction of the responses to innocuous and noxious pressure was observed when omega-CTx GVIA was administered ionophoretically to nine hyperexcitable neurons. In neurons with input from the normal or the inflamed knee joint, the administration of omega-CTx GVIA led also to a reduction of the responses to innocuous and noxious pressure applied to the noninflamed ankle joint. 3. The topical administration of nimodipine decreased the responses to innocuous and noxious pressure applied to the knee in a sample of 9 neurons with input from the normal joint and in a sample of 16 neurons with input from the inflamed knee joint (hyperexcitable neurons). Within administration times of 30 min, the responses were reduced to approximately 70% of the predrug values. In hyperexcitable neurons, the responses to innocuous and noxious pressure applied to the knee were also decreased during ionophoretic administration of nimodipine (6 neurons) and diltiazem (9 neurons). When the noninflamed ankle was stimulated, the responses to innocuous pressure were reduced neither in neurons with input from the normal knee nor in neurons with input from the inflamed knee, but the responses of hyperexcitable neurons to noxious pressure onto the ankle were reduced. The ionophoretic administration of the agonist at the L-type calcium channel, S(-)-Bay K 8644, enhanced the responses to mechanical stimulation of the knee joint in all 14 hyperexcitable neurons tested. The effect of S(-)-Bay K 8644 was counteracted by both diltiazem (in 6 of 6 neurons) and nimodipine (in 5 of 5 neurons). 4. These data show that antagonists at both the N- and the L-type voltage-dependent calcium channels influence the spinal processing of input from the knee joint. The data suggest, therefore, that voltage-dependent calcium calcium channels of both the N and the L type are important for the sensory functions of the spinal cord. They are involved in the spinal processing of nonnociceptive as well as nociceptive mechanosensory input from the joint, both under normal and inflammatory conditions. The present results show in particular that N- and L-type channels are likely to be involved in the generation of pain evoked by noxious mechanical stimulation in normal tissue as well as in the mechanical hyperalgesia that is usually pres


2000 ◽  
Vol 78 (7) ◽  
pp. 535-540 ◽  
Author(s):  
Jason J McDougall ◽  
Grace Yeung ◽  
Catherine A Leonard ◽  
Robert C Bray

Knee joint ligament healing has been shown to be improved when the torn ligament ends remain in contact, however, the rationale for these effects is unknown. The sensory neuropeptide calcitonin gene related peptide (CGRP) has potent trophic and vasodilatatory properties and as such is thought to be advantageous in wound repair. In ascertaining a role for CGRP in rabbit medial collateral ligament healing, the present study examined changes in CGRP-like immunoreactivity (CGRP-LI) and CGRP-mediated vasomotor responses in gap injured (non-contact), Z-plasty apposed (contact), and sham operated control medial collateral ligaments. At 6 weeks post-trauma, CGRP-LI decreased in the healing zone of gap injured and Z-plasty apposed medial collateral ligaments compared with controls, and non-contact ligament nerve fibres exhibited an abnormal morphology. Topical administration of CGRP (10-13 to 10-9 mol) caused a dose-dependent increase in ligament perfusion in each experimental group of knees. The CGRP-mediated vasodilatation associated with gap injured ligaments was not significantly different from controls (P = 0.06), whereas apposed medial collateral ligaments showed an augmented response to the peptide (P < 0.0005). These findings indicate that the beneficial effects of ligament interposition post-trauma may be related to an enhanced responsiveness to CGRP in conjunction with a more typical re-innervation profile. Conversely, the aberrant characteristics of CGRP-LI nerves occurring in gap injured tissue is suggestive of impaired CGRP release which may explain the poor functional recovery associated with these ligaments.Key words: blood flow, injury, knee joint, neuropeptides, wound repair.


1995 ◽  
Vol 73 (7) ◽  
pp. 991-994 ◽  
Author(s):  
P. Holzer ◽  
Ch. Wachter ◽  
M. Jocič ◽  
I. Th. Lippe ◽  
A. Heinemann ◽  
...  

Calcitonin gene related peptide (CGRP) is the major mediator of afferent nerve mediated vasodilatation in the gastric mucosa and skin of the rat. Since receptors for CGRP occur on both the vascular endothelium and smooth muscle, it is conceivable that the vascular actions of CGRP involve multiple mechanisms. The vasodilator effect of rat CGRP-α in the rat gastric mucosa is indeed inhibited by blockade of nitric oxide (NO) synthesis, as is the gastric mucosal hyperemia in response to gastric acid challenge, which is mediated by CGRP release from afferent nerve fibres. In contrast, the vasodilator response to rat CGRP-α in the rat hind paw and the CGRP-mediated vasodilatation evoked by antidromic stimulation of afferent nerve fibres do not depend on the formation of NO. These data indicate that NO plays regionally different roles in the local vasodilator action of CGRP. NO is a secondary vasorelaxant messenger of CGRP in the gastric, but not in the cutaneous, microcirculation. However, this L-arginine-derived autacoid may have a role in the irritant-induced CGRP release from afferent vasodilator fibres in the skin.Key words: calcitonin gene related peptide, nitric oxide, microcirculation, gastric mucosa, skin, afferent nerve fibres, neurogenic vasodilatation.


Sign in / Sign up

Export Citation Format

Share Document