wound repair
Recently Published Documents


TOTAL DOCUMENTS

2191
(FIVE YEARS 554)

H-INDEX

115
(FIVE YEARS 13)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 176
Author(s):  
Jun Jiang ◽  
Ursula Kraneburg ◽  
Ulf Dornseifer ◽  
Arndt F. Schilling ◽  
Ektoras Hadjipanayi ◽  
...  

The ability to use the body’s resources to promote wound repair is increasingly becoming an interesting area of regenerative medicine research. Here, we tested the effect of topical application of blood-derived hypoxia preconditioned serum (HPS) on wound healing in a murine wound model. Alginate hydrogels loaded with two different HPS concentrations (10 and 40%) were applied topically on full-thickness wounds created on the back of immunocompromised mice. We achieved a significant dose-dependent wound area reduction after 5 days in HPS-treated groups compared with no treatment (NT). On average, both HPS-10% and HPS-40% -treated wounds healed 1.4 days faster than NT. Healed tissue samples were investigated on post-operative day 15 (POD 15) by immunohistology and showed an increase in lymphatic vessels (LYVE-1) up to 45% with HPS-40% application, while at this stage, vascularization (CD31) was comparable in the HPS-treated and NT groups. Furthermore, the expression of proliferation marker Ki67 was greater on POD 15 in the NT-group compared to HPS-treated groups, in accordance with the earlier completion of wound healing observed in the latter. Collagen deposition was similar in all groups, indicating lack of scar tissue hypertrophy as a result of HPS-hydrogel treatment. These findings show that topical HPS application is safe and can accelerate dermal wound healing in mice.


Author(s):  
Gan Xu ◽  
Yusheng Geng ◽  
Le Hu ◽  
Jianhua Wang ◽  
PanPan Pan ◽  
...  
Keyword(s):  

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 56
Author(s):  
Hongdou Shen ◽  
Pei Wang ◽  
Xiaoke Han ◽  
Mengli Ma ◽  
Yinghui Shang ◽  
...  

Promising wound dressings can achieve rapid soft-tissue filling while refactoring the biochemical and biophysical microenvironment to recruit endogenous cells, facilitating tissue healing, integration, and regeneration. In this study, a tissue biomolecule-responsive hydrogel matrix, employing natural silk fibroin (SF) as a functional biopolymer and haemoglobin (Hb) as a peroxidase-like biocatalyst, was fabricated through cascade enzymatic crosslinking. The hydrogels possessed mechanical tunability and displayed adjustable gelation times. A tyrosine unit on SF stabilised the structure of Hb during the cascade oxidation process; thus, the immobilized Hb in SF hydrogels exhibited higher biocatalytic efficiency than the free enzyme system, which provided a continuously antioxidative system. The regulation of the dual enzyme ratio endowed the hydrogels with favourable biocompatibility, biodegradability, and adhesion strength. These multifunctional hydrogels provided a three-dimensional porous extracellular matrix-like microenvironment for promoting cell adhesion and proliferation. A rat model with a full-thickness skin defect revealed accelerated wound regeneration via collagen deposition, re-epithelialisation and revascularisation. Enzyme-loaded hydrogels are an attractive and high-safety biofilling material with the potential for wound healing, tissue regeneration, and haemostasis.


Author(s):  
Ning Zeng ◽  
Hongbo Chen ◽  
Yiping Wu ◽  
Zeming Liu

Wound healing is one of the most complex physiological regulation mechanisms of the human body. Stem cell technology has had a significant impact on regenerative medicine. Adipose stem cells (ASCs) have many advantages, including their ease of harvesting and high yield, rich content of cell components and cytokines, and strong practicability. They have rapidly become a favored tool in regenerative medicine. Here, we summarize the mechanism and clinical therapeutic potential of ASCs in wound repair.


2022 ◽  
pp. 088532822110649
Author(s):  
Juliana C Rosa ◽  
Jean J Bonvent ◽  
Arnaldo R Santos

The rotary jet spinning technique permits the production of biomaterials that can be used as devices that come into contact with biological systems (including biological fluids) for diagnostic or surgical applications. These materials are composed of synthetic or natural compounds and allow the incorporation of drugs for therapeutic purposes. Two solutions containing 50% poly(lactic acid) (PLA) and 50% poly(ε-caprolactone) (PCL) diluted in three different solvents were prepared for rotary jet spinning (RJS) process. Vancomycin, an antibiotic indicated for the treatment of severe staphylococcal infections in patients with penicillin allergy, was added in the polymer solutions, to obtain drug-loaded fibrous mats. Morphological surface characterization by scanning electron microscopy revealed heterogeneous pores in the microfibers. Vancomycin loading interfered with the morphology of all samples in terms of fiber size, leading to smaller diameter fibers. Attenuated total reflectance/Fourier transform infrared spectroscopy was used for identification of the samples. The vibrational characteristics of PCL/PLA and vancomycin were consistent with expectations. Vero cell culture assays by the extract dilution and direct contact methods revealed the absence of cytotoxicity, except for the sample prepared with 50% of PCL and of a 9/2 (V/V) vancomycin content, with the growth of confluent and evenly spread cells on the fibrous mats surface. Microbiological analysis, performed on Staphylococcus aureus by the halo inhibition test and by the broth dilution method, showed that the antibacterial activity of vancomycin was maintained by the loading process in the polymer fibers. The results showed that rotary jet spinning produces satisfactory amounts of Vancomycin-loaded fibers, as potential web dressing for wound repair


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Yangyang Liu ◽  
Shurui Song ◽  
Shuangyong Liu ◽  
Xiaoyan Zhu ◽  
Peige Wang

Traditional dressings used for wound repair, such as gauze, have shortcomings; for example, they cannot provide a suitable microenvironment for wound recovery. Therefore, it is necessary to find a better dressing to overcome shortcomings. Hydrogel provides a suitable wet environment, has good biocompatibility, and has a strong swelling rate to absorb exudate. Nanomaterial in hydrogels has been used to improve their performance and overcome the shortcomings of current hydrogel dressings. Hydrogel dressing can also be loaded with nanodrug particles to exert a better therapeutic effect than conventional drugs and to make the dressing more practical. This article reviews the application of nanotechnology in hydrogels related to wound healing and discusses the application prospects of nanohydrogels. After searching for hydrogel articles related to wound healing, we found that nanomaterial can not only enhance the mechanical strength, antibacterial properties, and adhesion of hydrogels but also achieve sustained drug release. From the perspective of clinical application, these characteristics are significant for wound healing. The combination of nanomaterial and hydrogel is an ideal dressing with broad application prospects for wound healing in the future.


Author(s):  
Chunyan Cai ◽  
Zhengjie Meng ◽  
Lulu Zhao ◽  
Tong Wu ◽  
Xia Xu ◽  
...  

Author(s):  
M.C. Arriba ◽  
G. Fernández ◽  
E. Chacón-Solano ◽  
M. Mataix ◽  
L. Martínez-Santamaría ◽  
...  

Author(s):  
Loretta Ferrera ◽  
Floriana Cappiello ◽  
Maria Rosa Loffredo ◽  
Elena Puglisi ◽  
Bruno Casciaro ◽  
...  

AbstractMutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein lead to persistent lung bacterial infections, mainly due to Pseudomonas aeruginosa, causing loss of respiratory function and finally death of people affected by CF. Unfortunately, even in the era of CFTR modulation therapies, management of pulmonary infections in CF remains highly challenging especially for patients with advanced stages of lung disease. Recently, we identified antimicrobial peptides (AMPs), namely Esc peptides, with potent antipseudomonal activity. In this study, by means of electrophysiological techniques and computational studies we discovered their ability to increase the CFTR-controlled ion currents, by direct interaction with the F508del-CFTR mutant. Remarkably, this property was not explored previously with any AMPs or peptides in general. More interestingly, in contrast with clinically used CFTR modulators, Esc peptides would give particular benefit to CF patients by combining their capability to eradicate lung infections and to act as promoters of airway wound repair with their ability to ameliorate the activity of the channel with conductance defects. Overall, our findings not only highlighted Esc peptides as the first characterized AMPs with a novel property, that is the potentiator activity of CFTR, but also paved the avenue to investigate the functions of AMPs and/or other peptide molecules, for a new up-and-coming pharmacological approach to address CF lung disease.


Sign in / Sign up

Export Citation Format

Share Document