Reduced day-to-day variation accompanies adaptive plasticity in the primate spinal stretch reflex

1985 ◽  
Vol 54 (2-3) ◽  
pp. 165-171 ◽  
Author(s):  
Jonathan R. Wolpaw ◽  
Julie A. O’Keefe ◽  
Victor A. Kieffer ◽  
Michael G. Sanders
1986 ◽  
Vol 55 (2) ◽  
pp. 272-279 ◽  
Author(s):  
J. R. Wolpaw ◽  
J. A. O'Keefe ◽  
P. A. Noonan ◽  
M. G. Sanders

Monkeys can gradually change the amplitude of the wholly segmental, largely monosynaptic, spinal stretch reflex (SSR) when confronted by a task requiring such change (15-19). Change develops over months and may reverse and redevelop at similarly slow rates. We investigated the persistence of SSR amplitude change over nonperformance periods of up to 38 days. Eight animals with chronic EMG electrodes learned to maintain elbow angle and a given level of biceps background EMG against constant extension torque. At random times, a brief additional extension torque pulse elicited the biceps SSR. In the control mode, reward always followed. Under the SSR increase or SSR decrease mode, reward occurred only if the absolute value of biceps EMG in the SSR interval was above or below a set value. Animals completed 3,000-6,000 trials/day over data-collection periods of 2-17 mo. Animals worked first under the control mode for up to 60 days and then under the SSR increase or SSR decrease mode for up to 274 days. Mode was switched once or twice more (SSR increase to SSR decrease or vice versa) over subsequent months. Animals responded to each SSR increase or SSR decrease mode exposure with gradual mode-appropriate change in SSR amplitude. Mode exposures were interrupted by gaps in performance of 10-38 days. Gaps produced transient 10- to 15% decreases in SSR amplitude under the control mode. This nonspecific decrease disappeared over the first week of postgap performance. Under the control mode, gaps had no other effects on SSR amplitude.(ABSTRACT TRUNCATED AT 250 WORDS)


1983 ◽  
Vol 50 (6) ◽  
pp. 1296-1311 ◽  
Author(s):  
J. R. Wolpaw ◽  
D. J. Braitman ◽  
R. F. Seegal

Description of the neuronal and synaptic bases of memory in the vertebrate central nervous system (CNS) requires a CNS stimulus-response pathway that is defined and accessible, has the capacity for adaptive change, and clearly contains the responsible substrates. This study was an attempt to determine whether the spinal stretch reflex (SSR), the initial, purely spinal, portion of the muscle stretch response, which satisfies the first requirement, also satisfies the second, capacity for adaptive change. Monkeys prepared with chronic fine-wire biceps electromyographic (EMG) electrodes were trained to maintain elbow position and a given level of biceps background EMG activity against constant extension torque. At random times, a brief additional extension torque pulse extended the elbow and elicited the biceps SSR. Under the control mode, reward always followed. Under the SSR increases or SSR decreases mode, reward followed only if the absolute value of biceps EMG from 14 to 24 ms after stretch onset (the SSR interval) was above or below a set value. Animals performed 3,000-6,000 trials/day over data-collection periods of up to 15 mo. Background EMG and the initial 30 ms of pulse-induced extension remained stable throughout data collection. Under the SSR increases or SSR decreases mode, SSR amplitude (EMG amplitude in the SSR interval minus background EMG amplitude) changed appropriately. Change was evident in 5-10 days and progressed over at least 4 wk. The SSR increased (SSR increases) to 140-190% control amplitude or decreased (SSR decreases) to 22-79%. SSR change did not regress over 12-day gaps in task performance. A second pair of biceps electrodes, monitored simultaneously, supplied comparable data, indicating that SSR amplitude change occurred throughout the muscle. Beyond 40 ms after pulse onset, elbow extension was inversely correlated with SSR amplitude. The delay between the SSR and its apparent effect on movement is consistent with expected motor-unit contraction time. The data demonstrate that the SSR is capable of adaptive change. At present the most likely site(s) of the mechanism of SSR amplitude change are the Ia synapse and/or the muscle spindle. Available related evidence suggests persistent segmental change may in fact come to mediate SSR amplitude change. If so, such segmental change would constitute a technically accessible fragment of a memory.


1983 ◽  
Vol 50 (6) ◽  
pp. 1312-1319 ◽  
Author(s):  
J. R. Wolpaw ◽  
R. F. Seegal ◽  
J. A. O'Keefe

Monkeys can gradually change the amplitude of the biceps spinal stretch reflex (SSR) without change in initial muscle length or biceps background electromyographic activity (EMG) (17). We investigated the concurrent behavior of synergist (brachialis and brachioradialis) and antagonist (triceps) muscles. Synergist background EMG remained stable while marked change occurred in biceps SSR amplitude. Triceps background EMG was minimal under all conditions. Thus biceps SSR amplitude change was not due to change in the background activity of closely related muscles. When biceps SSR amplitude changed, synergist SSR amplitude changed similarly but to a lesser extent. Brachialis change averaged 72% of biceps change, while brachioradialis change averaged 33%. By indicating that SSR amplitude change is relatively specific to the agonist muscle, this finding eliminates a number of nonspecific mechanisms as possible origins of SSR amplitude change. Thus it supports the potential value of the SSR as a system for studying the neuronal and synaptic bases of memory in the primate central nervous system (CNS).


1983 ◽  
Vol 267 (1) ◽  
pp. 196-200 ◽  
Author(s):  
Jonathan R. Wolpaw ◽  
Victor A. Kieffer ◽  
Richard F. Seegal ◽  
David J. Braitman ◽  
Michael G. Sanders

1984 ◽  
Vol 300 (2) ◽  
pp. 385-391 ◽  
Author(s):  
Jonathan R. Wolpaw ◽  
Patricia A. Noonan ◽  
Julie A. O'Keefe

Neuron ◽  
2009 ◽  
Vol 63 (1) ◽  
pp. 8-11 ◽  
Author(s):  
Géraldine S. Maro ◽  
Kang Shen ◽  
Hwai-Jong Cheng

2019 ◽  
Vol 122 (1) ◽  
pp. 435-446 ◽  
Author(s):  
N. Mrachacz-Kersting ◽  
U. G. Kersting ◽  
P. de Brito Silva ◽  
Y. Makihara ◽  
L. Arendt-Nielsen ◽  
...  

Changing the H reflex through operant conditioning leads to CNS multisite plasticity and can affect previously learned skills. To further understand the mechanisms of this plasticity, we operantly conditioned the initial component (M1) of the soleus stretch reflex. Unlike the H reflex, the stretch reflex is affected by fusimotor control, comprises several bursts of activity resulting from temporally dispersed afferent inputs, and may activate spinal motoneurons via several different spinal and supraspinal pathways. Neurologically normal participants completed 6 baseline sessions and 24 operant conditioning sessions in which they were encouraged to increase (M1up) or decrease (M1down) M1 size. Five of eight M1up participants significantly increased M1; the final M1 size of those five participants was 143 ± 15% (mean ± SE) of the baseline value. All eight M1down participants significantly decreased M1; their final M1 size was 62 ± 6% of baseline. Similar to the previous H-reflex conditioning studies, conditioned reflex change consisted of within-session task-dependent adaptation and across-session long-term change. Task-dependent adaptation was evident in conditioning session 1 with M1up and by session 4 with M1down. Long-term change was evident by session 10 with M1up and by session 16 with M1down. Task-dependent adaptation was greater with M1up than with the previous H-reflex upconditioning. This may reflect adaptive changes in muscle spindle sensitivity, which affects the stretch reflex but not the H reflex. Because the stretch reflex is related to motor function more directly than the H reflex, M1 conditioning may provide a valuable tool for exploring the functional impact of reflex conditioning and its potential therapeutic applications. NEW & NOTEWORTHY Since the activity of stretch reflex pathways contributes to locomotion, changing it through training may improve locomotor rehabilitation in people with CNS disorders. Here we show for the first time that people can change the size of the soleus spinal stretch reflex through operant conditioning. Conditioned stretch reflex change is the sum of task-dependent adaptation and long-term change, consistent with H-reflex conditioning yet different from it in the composition and amount of the two components.


Sign in / Sign up

Export Citation Format

Share Document