Preparatory balance adjustments precede withdrawal response to noxious stimulation in standing humans

1999 ◽  
Vol 267 (3) ◽  
pp. 197-200 ◽  
Author(s):  
William E. McIlroy ◽  
Leah R. Bent ◽  
Jim R. Potvin ◽  
John D. Brooke ◽  
Brian E. Maki
2001 ◽  
Vol 204 (3) ◽  
pp. 457-469 ◽  
Author(s):  
E. Walters ◽  
P. Illich ◽  
J. Weeks ◽  
M. Lewin

Sensitization of defensive responses following noxious stimulation occurs in diverse species, but no demonstration of nociceptive sensitization in insects has been reported. A set of defensive behavior patterns in larval Manduca sexta is described and shown to undergo sensitization following noxious mechanical stimulation. The striking response is a rapid bending that accurately propels the head towards sharply poking or pinching stimuli applied to most abdominal segments. The strike is accompanied by opening of the mandibles and, sometimes, regurgitation. The strike may function to dislodge small attackers and startle larger predators. When the same stimuli are applied to anterior segments, the head is pulled away in a withdrawal response. Noxious stimuli to anterior or posterior segments can evoke a transient withdrawal (cocking) that precedes a strike towards the source of stimulation and may function to maximize the velocity of the strike. More intense noxious stimuli evoke faster, larger strikes and may also elicit thrashing, which consists of large, cyclic, side-to-side movements that are not directed at any target. These are sometimes also associated with low-amplitude quivering cycles. Striking and thrashing sequences elicited by obvious wounding are sometimes followed by grooming-like behavior. Very young larvae also show locomotor responses to noxious stimuli. Observations in the field of attacks on M. sexta larvae by Cardinalis cardinalis, an avian predator, suggest that thrashing decreases the success of a bird in biting a larva. In the laboratory, noxious stimulation was found to produce two forms of sensitization. Repeated pinching of prolegs produces incremental sensitization, with later pinches evoking more strikes than the first pinch. Brisk pinching or poking of prolegs also produces conventional sensitization, in which weak test stimuli delivered to another site evoke more strikes following noxious stimulation. The degree and duration of sensitization increase with more intense noxious stimulation. The most intense stimulus sequences were found to enhance strike frequency for approximately 60 min. Nociceptive sensitization generalizes to sites distant from sites of noxious stimulation, suggesting that it involves a general, but transient, arousal of defensive responses. http://www.biologists.com/JEB/movies/jeb3271.html


2020 ◽  
Vol 123 (6) ◽  
pp. 2201-2208
Author(s):  
Fabricio A. Jure ◽  
Federico G. Arguissain ◽  
José A. Biurrun Manresa ◽  
Thomas Graven-Nielsen ◽  
Ole Kæseler Andersen

Innate defensive behaviors such as reflexes are found across all species, constituting preprogrammed responses to external threats that are not anticipated. Previous studies indicated that the excitability of the reflex arcs like spinal nociceptive withdrawal reflex (NWR) pathways in humans are modulated by several cognitive factors. This study assesses how the predictability of a threat affects the biomechanical pattern of the withdrawal response, showing that distal and proximal muscles are differentially modulated by descending control.


1995 ◽  
Vol 82 (4) ◽  
pp. 1013-1025. ◽  
Author(s):  
J. G. Thalhammer ◽  
M. Vladimirova ◽  
B. Bershadsky ◽  
G. R. Strichartz

Background Quantitative behavioral testing is necessary to establish a reproducible measure of differential functional blockade during regional anesthesia. Methods for assessment of the neurologic status (mental status, posture, gait, proprioception, motor function, autonomic function, and nociception) in veterinary neurology were adapted for the rat and used to monitor functional changes separately during a sciatic nerve block. Methods Sprague-Dawley rats were acclimated to laboratory routine before the study so that lidocaine (0.1 ml, 1%) could be injected near the sciatic notch without any chemical restraint. The onset, duration, and magnitude of functional losses were monitored. Proprioceptive integrity was evaluated by assessing the response to tactile placing and the hopping response. Extensor postural thrust, a test for postural reactions in small animals, was assessed on a digital balance and found adequate for quantifying motor function. Analgesia was assessed by measuring withdrawal response latencies to noxious thermal stimulation (51 degrees C) and to superficial and deep noxious pinches. Autonomic function was monitored by measuring skin temperature. Contralateral limb function was used as an internal control, and injection of saline was used as an external control in separate, control animals. Results Onset of postural and gait abnormalities were observed as early as 40 s after injection. On each occasion proprioceptive impairment was detected first, followed by impairment of motor function and nociception. Complete absence of proprioception occurred from 10 to 30 min (n = 9) and of motor function at 30 min after injection (n = 10); both functions were fully recovered by 120 min. A unilateral increase in skin temperature on the foot was detected by 1 min; had reached its maximum change, 5.3 +/- 0.7 degrees C, at 10 min; and had returned to control levels at 60 min after injection (n = 12). Withdrawal response to cutaneous or superficial pain was absent in all ten animals from 5 to 30 min whereas the response to deep pain was absent in all ten animals at 20 min only. The response to noxious stimulation recovered at 90 min. Attention was paid to the temporal relation of the impairment of various functions. Conclusions Quantitative observations of the onset, offset, and intensity of differential functional impairment or block over time will make it possible to establish the doses and conditions for local anesthetics that result in differential nerve block and will permit comparison of these changes among different drugs and "clinical" protocols.


1999 ◽  
Vol 91 (1) ◽  
pp. 231-239 ◽  
Author(s):  
Uta S. Muth-Selbach ◽  
Irmgard Tegeder ◽  
Kay Brune ◽  
Gerd Geisslinger

Background Prostaglandin play a pivotal role in spinal nociceptive processing. At therapeutic concentrations, acetaminophen is not a cyclooxygenase inhibitor. inhibitor. Thus, it is antinociceptive without having antiinflammatory or gastrointestinal toxic effects. This study evaluated the role of spinal prostaglandin E2 (PGE2) in antinociception produced by intraperitoneally administered acetaminophen. Methods The PGE2 concentrations in the dorsal horn of the spinal cord were measured after formalin was injected into the hind paw of rats. The effect of antinociceptive doses of acetaminophen (100, 200, and 300 mg/kg given intraperitoneally) on PGE2 levels and flinching behavior was monitored Spinal PGE2 and acetaminophen concentrations were obtained by microdialysis using a probe that was implanted transversely through the dorsal horn of the spinal cord at L4. Furthermore, the effects of acetaminophen on urinary prostaglandin excretion were determined. Results Intraperitoneal administration of acetaminophen resulted in a significant decrease in spinal PGE2 release that was associated with a significant reduction in the flinching behavior in the formalin test Acetaminophen was distributed rapidly into the spinal cord with maximum dialysate concentrations 4560 min after intraperitoneal administration. Urinary excretion of prostanoids (PGE2, PGF2alpha, and 6-keto-PGF1alpha) was not significantly altered after acetaminophen administration. Conclusions The data confirm the importance of PGE2 in spinal nociceptive processing. The results suggest that antinociception after acetaminophen administration is mediated, at least in part, by inhibition of spinal PGE2 release. The mechanism, however, remains unknown. The finding that urinary excretion of prostaglandins was not affected might explain why acetaminophen is antinociceptive but does not compromise renal safety.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luke Baxter ◽  
Fiona Moultrie ◽  
Sean Fitzgibbon ◽  
Marianne Aspbury ◽  
Roshni Mansfield ◽  
...  

AbstractUnderstanding the neurophysiology underlying neonatal responses to noxious stimulation is central to improving early life pain management. In this neonatal multimodal MRI study, we use resting-state and diffusion MRI to investigate inter-individual variability in noxious-stimulus evoked brain activity. We observe that cerebral haemodynamic responses to experimental noxious stimulation can be predicted from separately acquired resting-state brain activity (n = 18). Applying this prediction model to independent Developing Human Connectome Project data (n = 215), we identify negative associations between predicted noxious-stimulus evoked responses and white matter mean diffusivity. These associations are subsequently confirmed in the original noxious stimulation paradigm dataset, validating the prediction model. Here, we observe that noxious-stimulus evoked brain activity in healthy neonates is coupled to resting-state activity and white matter microstructure, that neural features can be used to predict responses to noxious stimulation, and that the dHCP dataset could be utilised for future exploratory research of early life pain system neurophysiology.


2016 ◽  
Vol 116 (5) ◽  
pp. 624-631 ◽  
Author(s):  
L.N. Hannivoort ◽  
H.E.M. Vereecke ◽  
J.H. Proost ◽  
B.E.K. Heyse ◽  
D.J. Eleveld ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document