Estimations of amounts of soil organic carbon and fine root carbon in land use and land cover classes, and soil types of Chiapas highlands, Mexico

2003 ◽  
Vol 177 (1-3) ◽  
pp. 191-206 ◽  
Author(s):  
Jorge Mendoza-Vega ◽  
Erik Karltun ◽  
Mats Olsson
2019 ◽  
Vol 35 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Stoécio Malta Ferreira Maia ◽  
Giordano Bruno Medeiros Gonzaga ◽  
Leilane Kristine dos Santos Silva ◽  
Guilherme Bastos Lyra ◽  
Tâmara Cláudia de Araújo Gomes

2020 ◽  
Vol 39 (2) ◽  
pp. 159-173
Author(s):  
Rastislav Skalský ◽  
Štefan Koco ◽  
Gabriela Barančíková ◽  
Zuzana Tarasovičová ◽  
Ján Halas ◽  
...  

AbstractSoil organic carbon (SOC) in agricultural land forms part of the global terrestrial carbon cycle and it affects atmospheric carbon dioxide balance. SOC is sensitive to local agricultural management practices that sum up into regional SOC storage dynamics. Understanding regional carbon emission and sequestration trends is, therefore, important in formulating and implementing climate change adaptation and mitigation policies. In this study, the estimation of SOC stock and regional storage dynamics in the Ondavská Vrchovina region (North-Eastern Slovakia) cropland and grassland topsoil between 1970 and 2013 was performed with the RothC model and gridded spatial data on weather, initial SOC stock and historical land cover and land use changes. Initial SOC stock in the 0.3-m topsoil layer was estimated at 38.4 t ha−1 in 1970. The 2013 simulated value was 49.2 t ha−1, and the 1993–2013 simulated SOC stock values were within the measured data range. The total SOC storage in the study area, cropland and grassland areas, was 4.21 Mt in 1970 and 5.16 Mt in 2013, and this 0.95 Mt net SOC gain was attributed to inter-conversions of cropland and grassland areas between 1970 and 2013, which caused different organic carbon inputs to the soil during the simulation period with a strong effect on SOC stock temporal dynamics.


2021 ◽  
Vol 16 (3) ◽  
pp. 662-664
Author(s):  
Sabu Joseph ◽  
Rahul R ◽  
Sukanya S

The changes in the pattern of land use and land cover (LU/LC) have remarkable consequences on ecosystem functioning and natural resources dynamics. The present study analyzes the spatial pattern of LU/LC change detection along the Killiar River Basin (KRB), a major tributary of Karamana river in Thiruvananthapuram district, Kerala (India), over a period of 64 years (1957-2021) through Remote Sensing and GIS approach. The rationale of the study is to identify and classify LU/LC changes in KRB using the Survey of India (SOI) toposheet (1:50,000) of 1957, LISS-III imagery of 2005, Landsat 8 OLI & TIRS imagery of 2021 and further to scrutinize the impact of LU/LC conversion on Soil Organic Carbon stock in the study area. Five major LU/LC classes, viz., agriculture land, built-up, forest, wasteland and water bodies were characterized from available data. Within the study period, built-up area and wastelands showed a substantial increase of 51.51% and 15.67% respectively. Thus, the general trend followed is the increase in built-up and wastelands area which results in the decrease of all other LU/LC classes. Based on IPCC guidelines, total soil organic carbon (SOC) stock of different land-use types was estimated and was 1292.72 Mt C in 1957, 562.65 Mt C in 2005 and it reduced to 152.86 Mt C in 2021. This decrease is mainly due to various anthropogenic activities, mainly built-up activities. This conversion for built-up is at par with the rising population, and over-exploitation of natural and agricultural resources is increasing every year.


2015 ◽  
Vol 12 (17) ◽  
pp. 5161-5184 ◽  
Author(s):  
T. Eickenscheidt ◽  
J. Heinichen ◽  
M. Drösler

Abstract. Drained organic soils are considered to be hotspots for greenhouse gas (GHG) emissions. Arable lands and intensively used grasslands, in particular, have been regarded as the main producers of carbon dioxide (CO2) and nitrous oxide (N2O). However, GHG balances of former peatlands and associated organic soils not considered to be peatland according to the definition of the Intergovernmental Panel on Climate Change (IPCC) have not been investigated so far. Therefore, our study addressed the question to what extent the soil organic carbon (SOC) content affects the GHG release of drained organic soils under two different land-use types (arable land and intensively used grassland). Both land-use types were established on a Mollic Gleysol (labeled Cmedium) as well as on a Sapric Histosol (labeled Chigh). The two soil types differed significantly in their SOC contents in the topsoil (Cmedium: 9.4–10.9 % SOC; Chigh: 16.1–17.2 % SOC). We determined GHG fluxes over a period of 1 or 2 years in case of N2O or methane (CH4) and CO2, respectively. The daily and annual net ecosystem exchange (NEE) of CO2 was determined by measuring NEE and the ecosystem respiration (RECO) with the closed dynamic chamber technique and by modeling the RECO and the gross primary production (GPP). N2O and CH4 were measured with the static closed chamber technique. Estimated NEE of CO2 differed significantly between the two land-use types, with lower NEE values (−6 to 1707 g CO2-C m−2 yr−1) at the arable sites and higher values (1354 to 1823 g CO2-C m−2 yr−1) at the grassland sites. No effect on NEE was found regarding the SOC content. Significantly higher annual N2O exchange rates were observed at the arable sites (0.23–0.86 g N m−2 yr−1) than at the grassland sites (0.12–0.31 g N m−2 yr−1). Furthermore, N2O fluxes from the Chigh sites significantly exceeded those of the Cmedium sites. CH4 fluxes were found to be close to zero at all plots. Estimated global warming potential, calculated for a time horizon of 100 years (GWP100) revealed a very high release of GHGs from all plots ranging from 1837 to 7095 g CO2 eq. m−2 yr−1. Calculated global warming potential (GWP) values did not differ between soil types and partly exceeded the IPCC default emission factors of the Tier 1 approach by far. However, despite being subject to high uncertainties, the results clearly highlight the importance of adjusting the IPCC guidelines for organic soils not falling under the definition in order to avoid a significant underestimation of GHG emissions in the corresponding sectors of the national climate reporting. Furthermore, the present results revealed that mainly the type of land-use, including the management type, and not the SOC content is responsible for the height of GHG exchange from intensive farming on drained organic soils.


2016 ◽  
Vol 160 ◽  
pp. 101-109 ◽  
Author(s):  
X. Xiong ◽  
S. Grunwald ◽  
R. Corstanje ◽  
C. Yu ◽  
N. Bliznyuk

2016 ◽  
Vol 62 (12) ◽  
pp. 1654-1664 ◽  
Author(s):  
Vladimir Ćirić ◽  
Milivoj Belić ◽  
Ljiljana Nešić ◽  
Srđan Šeremešić ◽  
Borivoj Pejić ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document