WITHDRAWN: Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells

2002 ◽  
Vol 5 (3) ◽  
pp. 611-615 ◽  
Author(s):  
Jingrong Yu ◽  
Baolian Yi ◽  
Danmin Xing ◽  
Fuqiang Liu ◽  
Zhigang Shao ◽  
...  

2020 ◽  
Author(s):  
Adam Bruce Ung ◽  
G. K. Surya Prakash ◽  
Thieo E. Hogen-Esch

2020 ◽  
Author(s):  
Adam Bruce Ung ◽  
G. K. Surya Prakash ◽  
Thieo E. Hogen-Esch ◽  
Adam Bruce Ung

2021 ◽  
Vol 22 (4) ◽  
pp. 1740 ◽  
Author(s):  
Selestina Gorgieva ◽  
Azra Osmić ◽  
Silvo Hribernik ◽  
Mojca Božič ◽  
Jurij Svete ◽  
...  

Herein, we prepared a series of nanocomposite membranes based on chitosan (CS) and three compositionally and structurally different N-doped graphene derivatives. Two-dimensional (2D) and quasi 1D N-doped reduced graphene oxides (N-rGO) and nanoribbons (N-rGONRs), as well as 3D porous N-doped graphitic polyenaminone particles (N-pEAO), were synthesized and characterized fully to confirm their graphitic structure, morphology, and nitrogen (pyridinic, pyrrolic, and quaternary or graphitic) group contents. The largest (0.07%) loading of N-doped graphene derivatives impacted the morphology of the CS membrane significantly, reducing the crystallinity, tensile properties, and the KOH uptake, and increasing (by almost 10-fold) the ethanol permeability. Within direct alkaline ethanol test cells, it was found that CS/N rGONRs (0.07 %) membrane (Pmax. = 3.7 mWcm−2) outperformed the pristine CS membrane significantly (Pmax. = 2.2 mWcm−2), suggesting the potential of the newly proposed membranes for application in direct ethanol fuel cells.


Sign in / Sign up

Export Citation Format

Share Document