Performance evaluation of reduced graphene oxide membrane doped with polystyrene sulfonic acid for forward osmosis process

2021 ◽  
Vol 44 ◽  
pp. 101093
Author(s):  
Priyamjeet Deka ◽  
Vishal Kumar Verma ◽  
Bonita Yurembam ◽  
Arindom Bikash Neog ◽  
Kalyan Raidongia ◽  
...  
2021 ◽  
Vol 324 ◽  
pp. 173-178
Author(s):  
Terence Tumolva ◽  
Kenneth Carmelo Madamba ◽  
Isabelle Gabrielle Nunag ◽  
Vinz Gabriel Villanueva

Current available methods for water desalination are energy intensive, expensive, and not feasible for small-scale applications. As an alternative, hydrogels may be utilized as a draw agent and semi-permeable membrane forward osmosis by acting as both to desalinate water. This study aims to synthesize and characterize hydrogels made from cellulose derivatives and reduced graphene oxide nanofillers in order to desalinate and remove microbes from seawater without requiring a large energy input. The hydrogels are formed by combining carboxymethyl cellulose, hydroxymethyl cellulose, reduced graphene oxide, and water to form a paste which is soaked in a crosslinking solution made of citric acid. Swelling, compression, antimicrobial efficiency and desalination efficiency tests were done. The hydrogel that obtained the highest values has a swelling ratio of 1,447%, compressive strength of 4 bar, desalination efficiency of 30%, and antimicrobial properties.


Solar Energy ◽  
2019 ◽  
Vol 194 ◽  
pp. 415-430 ◽  
Author(s):  
Gong Cheng ◽  
Xinzhi Wang ◽  
Xing Liu ◽  
Yurong He ◽  
Boris V. Balakin

2021 ◽  
Author(s):  
Nan Liu ◽  
Liming Zheng ◽  
Jie Xu ◽  
Jia Wang ◽  
Cuixia Hu ◽  
...  

AbstractAlthough single-particle cryogenic electron microscopy (cryo-EM) has been applied extensively for elucidating many crucial biological mechanisms at the molecular level, this technique still faces critical challenges, the major one of which is to prepare the high-quality cryo-EM specimen. Aiming to achieve a more reproducible and efficient cryo-EM specimen preparation, novel supporting films including graphene-based two-dimensional materials have been explored in recent years. Here we report a robust and simple method to fabricate EM grids coated with single- or few-layer reduced graphene oxide (RGO) membrane in large batch for high-resolution cryo-EM structural determination. The RGO membrane has decreased interlayer space and enhanced electrical conductivity in comparison to regular graphene oxide (GO) membrane. Moreover, we found that the RGO supporting film exhibited nice particle-absorption ability, thus avoiding the air-water interface problem. More importantly, we found that the RGO supporting film is particularly useful in cryo-EM reconstruction of sub-100 kDa biomolecules at near-atomic resolution, as exemplified by the study of RBD-ACE2 complex and other small protein molecules. We envision that the RGO membranes can be used as a robust graphene-based supporting film in cryo-EM specimen preparation.


2021 ◽  
Vol 1204 (1) ◽  
pp. 012004
Author(s):  
Djamil Guettiche ◽  
Ahmed Mekki ◽  
Tighilt Fatma Zohra ◽  
Noureddine Ramdani ◽  
Rachid Mahmoud

Abstract A new series of polypyrrole doped with n-dodecylbenzene sulphonic acid/reduced graphene oxide (PPy-DBSA/rGO) nanocomposite was electrodeposited on Indium tin oxide coated Polyethylene terephthalate (ITO/PET) flexible substrate by electrochemical route using the chronoamperometric technique. As-prepared for testing of chemiresistive properties against the detection of nitrogen dioxide (NO2) vapors at room temperature. The sensitivity and reactivity of the composite toward NO2 was evaluated. The recorded morphological and structural data confirmed that the PPy-DBSA/rGO forms a homogeneous nanocomposite. The optimal NO2 sensing properties have been revealed by the PPy-DBSA/rGO in terms of response (43%), response time (30.25 s), the detection limit (1ppm), and reproducibility. Furthermore, Results showed that the doped by sulfonic acid improved both the sensitivity and the reactivity of our produced nanocomposite toward NO2. Due to the strong interactions between the NO2 gas molecules and the rGO was dramatically enhanced the electronic properties of these nanocomposites. These striking characteristics of the newly developed nanocomposites make them very suitable to be used as NO2 gas sensor.


Sign in / Sign up

Export Citation Format

Share Document