Reaction list for charged-particle-induced nuclear reactions: Part B: Z=28 to Z=99 (Ni to Es)

1969 ◽  
Vol 7 (1-2) ◽  
pp. 1-232 ◽  
Author(s):  
F.K. McGowan ◽  
W.T. Milner ◽  
H.J. Kim ◽  
Wanda Hyatt
2008 ◽  
Vol 23 (17n20) ◽  
pp. 1668-1674
Author(s):  
MOTOHIKO KUSAKABE ◽  
TOSHITAKA KAJINO ◽  
RICHARD N. BOYD ◽  
TAKASHI YOSHIDA ◽  
GRANT J. MATHEWS

Spectroscopic observations of metal poor halo stars give an indication of a possible primordial plateau of 6 Li abundance as a function of metallicity similar to that for 7 Li . The inferred abundance of 6 Li is ~1000 times larger than that predicted by standard big bang nucleosynthesis (BBN) for the baryon-to-photon ratio inferred from the WMAP data, and that of 7 Li is about 3 times smaller than the prediction. We study a possible solution to both the problems of underproduction of 6 Li and overproduction of 7 Li in BBN. This solution involves a hypothetical massive, negatively-charged particle that would bind to the light nuclei produced in BBN. The particle gets bound to the existing nuclei after the usual BBN, and a second epoch of nucleosynthesis can occur among nuclei bound to the particles. We numerically carry out a fully dynamical BBN calculation, simultaneously solving the recombination and ionization processes of negatively-charged particles by normal and particle-bound nuclei as well as many possible nuclear reactions among them. It is confirmed that BBN in the presence of these hypothetical particles can solve the two Li abundance problems simultaneously.


2018 ◽  
Vol 318 (3) ◽  
pp. 1949-1966
Author(s):  
F. Tárkányi ◽  
F. Ditrói ◽  
S. Takács ◽  
J. Csikai ◽  
A. Hermanne ◽  
...  

1984 ◽  
Vol 2 (2) ◽  
pp. 201-211 ◽  
Author(s):  
A. K. Chung ◽  
M. A. Prelas

A novel method of utilizing fluorescence generated from the products of nuclear reactions offers the prospect of compact, high efficiency, multi-megajoule lasers. To overcome the problems associated with traditional laser (or energy converter)-fissile material interfaces, such as a uranium coating (low power density and low efficiency) or a gaseous uranium compound (low power density and deleterious effects on the laser kinetics and photon transport), a method suggested elsewhere of employing a reactor using a uranium aerosol fuel, interspersed with a fluorescer medium, is briefly reviewed. The charged particles produced by nuclear reactions in the fuel produce fluorescence in the core region of the reactor, through interactions with the fluorescer. This fluorescence can then be concentrated, to increase the effective power density in the laser medium, and used to drive a photolytic laser.One key issue in the above process is the charged particle spectrum from the fissile aerosol. These issues can be addressed theoretically based on the Dirac chord length distribution technique and an Arcen's function. The charged particle spectrum from a UO2 coating has been generated and benchmarked with the experimental data of Kahn et al., and Redmond et al. Agreement is generally good except near the end of the fission fragment tracks. The validity of this simple technique in approximating the rate of ion energy loss lends confidence to the generation of fission fragment spectra for other geometries (i.e. spherical in which transport efficiencies of over 60% appear achievable) using U, UO2 and U3O8. Work is also extended to the case of B-10 in a variety of configurations which are frequently used in modern energy conversion experimental devices.


1969 ◽  
Vol 7 (1-2) ◽  
pp. 1-232 ◽  
Author(s):  
F.K. McGowan ◽  
W.T. Milner ◽  
H.J. Kim ◽  
Wanda Hyatt

Sign in / Sign up

Export Citation Format

Share Document