Nucleotide Sequence of the Gene Coding for Proteolytic (Group I) Clostridium botulinum Type F Neurotoxin: Genealogical Comparison with other Clostridial Neurotoxins

1995 ◽  
Vol 18 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Michael J. Elmore ◽  
Roger A. Hutson ◽  
Matthew D. Collins ◽  
Nicola J. Bodsworth ◽  
Sarah M. Whelan ◽  
...  
1994 ◽  
Vol 28 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Roger A. Hutson ◽  
Matthew D. Collins ◽  
Alison K. East ◽  
Daphne E. Thompson

2000 ◽  
Vol 66 (12) ◽  
pp. 5480-5483 ◽  
Author(s):  
Sean S. Dineen ◽  
Marite Bradshaw ◽  
Eric A. Johnson

ABSTRACT Boticin B is a heat-stable bacteriocin produced byClostridium botulinum strain 213B that has inhibitory activity against various strains of C. botulinum and related clostridia. The gene encoding the bacteriocin was localized to a 3.0-kb HindIII fragment of an 18.8-kb plasmid, cloned, and sequenced. DNA sequencing revealed the boticin B structural gene,btcB, to be an open reading frame encoding 50 amino acids. A C. botulinum strain 62A transconjugant containing theHindIII fragment inserted into a clostridial shuttle vector expressed boticin B, although at much lower levels than those observed in C. botulinum 213B. To our knowledge, this is the first demonstration and characterization of a bacteriocin from toxigenic group I C. botulinum.


2009 ◽  
Vol 72 (2) ◽  
pp. 375-383 ◽  
Author(s):  
KATJA HINDERINK ◽  
MIIA LINDSTRÖM ◽  
HANNU KORKEALA

The minimum and maximum growth temperatures of 23 group I Clostridium botulinum strains of the toxin types A, AB, B, and F were determined. Moreover, the maximum growth rates at 20, 37, and 42°C of the same strains were recorded. The minimum growth temperatures varied from 12.8 to 16.5°C, whereas the maximum growth temperatures showed even wider variation, from 40.9 to 48.0°C. At 20 and 37°C, a twofold difference in maximum growth rates between the slowest and the fastest growing strains was found; at 42°C the difference was more than 30-fold. As expected, all strains grew significantly slower at 20°C than at 37°C. However, eight type B strains grew substantially faster at 42°C than they did at 37°C. These findings indicate that the optimum growth temperature for some group I C. botulinum type B strains is higher than the temperature of 37°C that is generally accepted. A significant correlation between maximum growth rates at 42°C and maximum growth temperatures was found for type B and F strains, whereas for type A strains no such correlation could be found. Strain variation was particularly high for the type B strains, reflecting the wide genetic diversity of this toxin type. The significant variation between strains of group I C. botulinum may have an impact on inoculation studies and predictive modeling when assessing the safety of foods.


2009 ◽  
Vol 75 (19) ◽  
pp. 6094-6101 ◽  
Author(s):  
Carolina Lúquez ◽  
Brian H. Raphael ◽  
Susan E. Maslanka

ABSTRACT There is limited knowledge of the neurotoxin gene diversity among Clostridium botulinum type Ab strains. Only the sequences of the bont/A and bont/B genes in C. botulinum type Ab strain CDC1436 and the sequence of the bont/B gene in C. botulinum type Ab strain CDC588 have been reported. In this study, we sequenced the entire bont/A- and bont/B-associated neurotoxin gene clusters of C. botulinum type Ab strain CDC41370 and the bont/A gene of strain CDC588. In addition, we analyzed the organization of the neurotoxin gene clusters in strains CDC588 and CDC1436. The bont/A nucleotide sequence of strain CDC41370 differed from those of the known bont/A subtypes A1 to A4 by 2 to 7%, and the predicted amino acid sequence differed by 4% to 14%. The bont/B nucleotide sequence in strain CDC41370 showed 99.7% identity to the sequence of subtype B1. The bont/A nucleotide sequence of strain CDC588 was 99.9% identical to that of subtype A1. Although all of the C. botulinum type Ab strains analyzed contained the two sets of neurotoxin clusters, similar to what has been found in other bivalent strains, the intergenic spacing of p21-orfX1 and orfX2-orfX3 varied among these strains. The type Ab strains examined in this study had differences in their toxin gene cluster compositions and bont/A and bont /B nucleotide sequences, suggesting that they may have arisen from separate recombination events.


Sign in / Sign up

Export Citation Format

Share Document