botulinum neurotoxin
Recently Published Documents


TOTAL DOCUMENTS

2240
(FIVE YEARS 328)

H-INDEX

83
(FIVE YEARS 7)

Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Hodan Ibrahim ◽  
Jacquie Maignel ◽  
Fraser Hornby ◽  
Donna Daly ◽  
Matthew Beard

Botulinum neurotoxin (BoNT/A) is an FDA and NICE approved second-line treatment for overactive bladder (OAB) in patients either not responsive or intolerant to anti-cholinergic drugs. BoNT/A acts to weaken muscle contraction by blocking release of the neurotransmitter acetyl choline (ACh) at neuromuscular junctions. However, this biological activity does not easily explain all the observed effects in clinical and non-clinical studies. There are also conflicting reports of expression of the BoNT/A protein receptor, SV2, and intracellular target protein, SNAP-25, in the urothelium and bladder. This review presents the current evidence of BoNT/A’s effect on bladder sensation, potential mechanisms by which it might exert these effects and discusses recent advances in understanding the action of BoNT in bladder tissue.


Author(s):  
Hongmei Tang ◽  
Tingting Peng ◽  
Xubo Yang ◽  
Liru Liu ◽  
Yunxian Xu ◽  
...  

Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 47
Author(s):  
Chih-Chieh Lin ◽  
Hann-Chorng Kuo

Botulinum neurotoxin type A (BoNT-A) injection and augmentation enterocystoplasty (AE) are alternative and effective management strategies for neurogenic detrusor overactivity (NDO) refractory to pharmacotherapy. A great majority of patients with spinal cord injury (SCI) may, however, prefer BoNT-A injections to AE, due to the less invasive characteristics. In this study we evaluated the influence of various video-urodynamic study (VUDS) parameters in SCI patients who continuously received repeat BoNT-A detrusor injections or switched to AE to improve their bladder conditions. We compared the changes in the urodynamic parameters before and after each mode of treatment. In this retrospective study, all SCI patients with refractory NDO who had received at least one BoNT-A injection were enrolled. VUDS was performed before and after both BoNT-A injection and AE. All of the urodynamic parameters of the storage and micturition—including the bladder capacity of every sensation, maximal flow rate (Qmax), post-voiding residual volume, detrusor pressure at Qmax, and bladder contractility index—were recorded. A total of 126 patients, including 46 women and 80 men, with a mean age of 41.8 ± 13.1 years, were recruited for this study. All of the patients receiving either BoNT-A injection or AE had a statistically significant increase of bladder capacity at every time-point during filling and a decrease in detrusor pressure at Qmax during voiding. Patients who switched from BoNT-A to AE had greater improvements in their urodynamic parameters when compared with those who continued with BoNT-A injections. Accordingly, SCI patients receiving BoNT-A injections but experiencing few improvements in their urodynamic parameters should consider switching to AE to achieve a better storage function and bladder capacity.


2022 ◽  
Author(s):  
Anna V. Reznik

The aim of this chapter is to structure current information clarifying the most disputable issues of botulinum neurotoxin type A (BoNT/A) pharmacology after systemic (botulism) impact and local medical application. Botulinum neurotoxin (BoNT) pharmacological features evaluated open ways to study factors affecting its biological activity: to extend/shorten its effect duration, to increase/decrease BoNT sensitivity in specific patient populations. The chapter presents unique molecular mechanisms underlying BoNT/A pharmacokinetics and pharmacodynamics: entering the body, distribution, receptor binding, translocation, mediator release suppression, zinc metabolism as well as factors affecting body sensitivity to BoNT at each of those stages. The specific biological effects of BoNT/A, which may underlie its analgesic, anticancer and anti-inflammatory effects, are described. Botulinum neurotoxin pharmacokinetics and pharmacodynamics features discussed herein represent significant clinical relevance since they determine botulinum treatment safety and effectiveness. And also they open ways to develop both BoNT-based therapies and anti-botulinic agents.


2022 ◽  
Author(s):  
Shavron Hada ◽  
Jae Chul Lee ◽  
Eun Chae Lee ◽  
Sunkyong Ji ◽  
Jeong Sun Nam ◽  
...  

Abstract Biophysical characterization of type A botulinum neurotoxin (BoNT/A) complex along with its thermodynamic stability was assessed through a combination of various methods. BoNT/A exists as large complexes in association with neurotoxin associated proteins (NAPs). To evaluate its biophysical behavior, size-exclusion chromatography (SEC), multi-angled light scattering (MALS), enzyme linked immunosorbent assay (ELISA), and dynamic light scattering (DLS) were utilized. Initially, a single peak (peak 1) of SEC was observed at pH 6.0, and an additional peak (peak 2) appeared at pH 7.4 with a decrement of peak 1. Through MALS and ELISA, the peak 2 was determined to be BoNT/A dissociated from its complex. The dissociation was accelerated by time and temperature. At 37°C, dissociated BoNT/A self-associated at pH 7.4 in the presence of polysorbate 20. On the other hand, the dissociation was partly reversible when titrated back to pH 6.0. Overall, BoNT/A was more stable when associated with NAPs at pH 6.0 compared to its dissociated state at pH 7.4. The conventional analytical methods could be utilized to relatively quantify its amount in different formulations.


2022 ◽  
Vol 12 ◽  
Author(s):  
Won-Ho Kang ◽  
Hyo-Jeong Ryu ◽  
Seongsung Kwak ◽  
Hwi-Yeol Yun

In recent, Botulinum Neurotoxin A1 (BoNT/A1) has been suggested as a potential anticancer agent due to neuronal innervation in tumor cells. Although potential BoNT/A1’s mechanism of action for the tumor suppression has been gradually revealed so far, there were no reports to figure out the exposure-response relationships because of the difficulty of its quantitation in the biological matrix. The main objectives of this study were to measure the anticancer effect of BoNT/A1 using a syngeneic mouse model transplanted with melanoma cells (B16-F10) and developed a kinetic-pharmacodynamic (K-PD) model for quantitative exposure-response evaluation. To overcome the lack of exposure information, the K-PD model was implemented by the virtual pharmacokinetic compartment link to the pharmacodynamic compartment of Simeoni’s tumor growth inhibition model and evaluated using curve-fitting for the tumor growth-time profile after intratumoral injection of BoNT/A1. The final K-PD model was adequately explained for a pattern of tumor growth depending on represented exposure parameters and simulation studies were conducted to determine the optimal dose under various scenarios considering dose strength and frequency. The optimal dose range and regimen of ≥13.8 units kg−1 once a week or once every 3 days was predicted using the final model in B16-F10 syngeneic model and it was demonstrated with an extra in-vivo experiment. In conclusion, the K-PD model of BoNT/A1 was well developed to optimize the dosing regimen for evaluation of anticancer effect and this approach could be expandable to figure out quantitative interpretation of BoNT/A1’s efficacy in various xenograft and/or syngeneic models.


Toxins ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 17
Author(s):  
Soo-Bin Kim ◽  
Hyoung-Moon Kim ◽  
Haeryun Ahn ◽  
You-Jin Choi ◽  
Kyung-Seok Hu ◽  
...  

When botulinum neurotoxin (BoNT) is injected to treat glabellar frown lines, the corrugator supercilia muscle (CSM) and procerus muscles are the main targets. Although there have been many studies on the treatment of glabellar frown lines, no study has confirmed the dynamic movement under ultrasonography (US). This study examined and evaluated dynamic muscle movements under US, thereby providing more effective BoNT injection guidelines for glabellar frowning. Glabellar frowning was categorized as either Type A or B. Type A is the general frowning pattern in which vertical wrinkles are made by contracting the CSM and procerus muscles (81%, n = 13). On US images, the procerus muscle thickens and the bilateral CSMs contract. Type B is an upward frowning pattern demonstrating upward elevation of vertical wrinkles due to hyperactive contraction of the frontalis muscle during frowning (19%, n = 3). On US images, the hypoechoic frontalis muscle thickens, forming horizontal forehead lines. After BoNT injection into the CSM and frontalis muscle but not the procerus muscle, Type B patterns showed improvements in the vertical crease and horizontal forehead line. Both types showed improvement in glabellar frown lines after conventional injection, but the horizontal forehead line did not improve in Type B. Type B wrinkles improved after additional injections into the frontalis muscle. This study provided novel anatomical findings related to the injection of glabellar frown lines with BoNT. Preliminary analysis and optimized procedures using US will enable more effective and safer injections.


2021 ◽  
Author(s):  
Hye Rin Kim ◽  
Younghun Jung ◽  
Jonghyeok Shin ◽  
Myungseo Park ◽  
Dae-Hyuk Kweon ◽  
...  

Abstract Recombinant peptides were designed using the C-terminal domain (receptor binding domain, RBD) and its subdomain (peptide A2) of a heavy chain of botulinum neurotoxin A-type 1 (BoNT/A1), which can bind to the luminal domain of synaptic vesicle glycoprotein 2C (SV2C-LD). Peptide A2- or RBD-containing recombinant peptides linked to an enhanced green fluorescence protein (EGFP) were prepared by expression in Escherichia coli. A pull-down assay using SV2C-LD-covered resins showed that the recombinant peptides for CDC5328 BoNT/A1, referred to EGFP-A2ʹ and EGFP-RBDʹ, exhibited ≥ 2.0-times stronger binding affinity to SV2C-LD than those for the wild-type BoNT/A1. Using bio-layer interferometry, an equilibrium dissociation rate constant (KD) of EGFP-RBDʹ to SV2C-LD was determined to be 5.45 mM, which is 33.87- and 15.67-times smaller than the KD values for EGFP and EGFP-A2ʹ, respectively. Based on confocal laser fluorescence micrometric analysis, the adsorption/absorption of EGFP-RBDʹ to/in differentiated PC-12 cells was 2.49- and 1.29-times faster than those of EGFP and EGFP-A2ʹ, respectively. Consequently, the recombinant peptides acquired reasonable neuron-specific binding/internalizing ability through the recruitment of RBDʹ. In conclusion, RBDs of BoNTs are versatile protein domains that can be used to mark neural systems and treat a range of disorders in neural systems.


Sign in / Sign up

Export Citation Format

Share Document