Hydrothermal alteration of felsic volcanic rocks associated with massive sulphide deposition in the northern Iberian Pyrite Belt (SW Spain)

2000 ◽  
Vol 15 (9) ◽  
pp. 1265-1290 ◽  
Author(s):  
Javier Sánchez-España ◽  
Francisco Velasco ◽  
Iñaki Yusta
1982 ◽  
Vol 19 (3) ◽  
pp. 619-623 ◽  
Author(s):  
I. H. Campbell ◽  
P. Coad ◽  
J. M. Franklin ◽  
M. P. Gorton ◽  
S. D. Scott ◽  
...  

Massive sulphide deposits are closely associated with felsic volcanism. This association is believed to be genetic and it forms the cornerstone for most exploration programs, but unfortunately not all felsic volcanic rocks contain ore. It seems likely that ore-bearing felsic volcanic rocks have a different genetic history from those that are barren and, if this is so, these differences should be reflected in their REE geochemistry.A preliminary study of REE in Archean felsic volcanic rocks has shown that those associated with ore have flat REE patterns with well-developed Eu anomalies whereas those from barren volcanic rocks have steep REE patterns with weak or absent Eu anomalies. The felsic volcanic rocks associated with ore can be subdivided into two types: tholeiitic and calc-alkaline. Kam-Kotia, Matagami, and South Bay are tholeiitic whereas Sturgeon Lake, Golden Grove, and Kuroko are calc-alkaline.The well-developed Eu anomalies in the ore-related felsic volcanic rocks indicate that the melt has undergone a high degree of fractional crystallization en route to the surface, suggesting the existence of a subvolcanic magma chamber below the orebody. The characteristic REE patterns of the ore-associated felsic volcanics should help mining companies in area selection for massive sulphide exploration.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 826
Author(s):  
Emilio Pascual ◽  
Teodosio Donaire ◽  
Manuel Toscano ◽  
Gloria Macías ◽  
Christian Pin ◽  
...  

VMS deposits in the Iberian Pyrite Belt (IPB), Spain and Portugal, constitute the largest accumulation of these deposits on Earth. Although several factors account for their genetic interpretation, a link between volcanism and mineralization is generally accepted. In many VMS districts, research is focused on the geochemical discrimination between barren and fertile volcanic rocks, these latter being a proxy of VMS mineralization. Additionally, the volcanological study of igneous successions sheds light on the environment at which volcanic rocks were emplaced, showing an emplacement depth consistent with that required for VMS formation. We describe a case on the El Almendro–Villanueva de los Castillejos (EAVC) succession, Spanish IPB, where abundant felsic volcanic rocks occur. According to the available evidence, their geochemical features, εNd signature and U–Pb dates suggest a possible link to VMS deposits. However, (paleo)volcanological evidence here indicates pyroclastic emplacement in a shallow water environment. We infer that such a shallow environment precluded VMS generation, a conclusion that is consistent with the absence of massive deposits all along this area. We also show that this interpretation lends additional support to previous models of the whole IPB, suggesting that compartmentalization of the belt had a major role in determining the sites of VMS deposition.


2008 ◽  
Vol 72 (5) ◽  
pp. 1103-1118 ◽  
Author(s):  
D. R. N. Rosa ◽  
A. A. Finch ◽  
T. Andersen ◽  
C. M. C Inverno

AbstractFelsic volcanic rocks exposed in the Frasnian Gafo Formation, in the Azinhalinho area of Portugal, display very similar geochemical signatures to volcanic rocks from the Iberian Pyrite Belt (IPB). located immediately to the south. The similarities include anomalously low high field-strength elements (HFSE) concentrations, possibly caused by low-temperature crustal melting, which translate into classification problems.A geochronological study, using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of zircon grains from these rocks, has provided concordia ages of 356±1.5 Ma and 355±2.5 Ma for two samples of rhyodacite porphyry, and 356±1.4 Ma for a granular rhyodacite. These results show that volcanism at Azinhalinho was broadly contemporaneous with IPB volcanism, widely interpreted as being of Famennian to Visean age. Considering that the host rocks of the Azinhalinho volcanic rocks are Frasnian, and therefore deposited synchronously with the Upper Devonian Phyllite-Quartzite Group sedimentation in the IPB basin, the radiometric ages imply that the Azinhalinho felsic rocks are intrusive and likely represent conduits or feeders to the volcanism of the IPB.


2021 ◽  
pp. 1-16
Author(s):  
Zélia Pereira ◽  
João X. Matos ◽  
A. Rita Solá ◽  
Maria João Batista ◽  
Rute Salgueiro ◽  
...  

Abstract The recently discovered massive and stockwork sulphide mineralization of Semblana-Rosa Magra and Monte Branco, situated ESE of the Neves–Corvo volcanogenic massive sulphide (VMS) deposit in the Iberian Pyrite Belt (IPB) is presented. Geological setting and tectonic model is discussed based on proxies such as palynostratigraphy and U–Pb zircon geochronology. The mineralization is found within the IPB Volcano-Sedimentary Complex (VSC) Lower sequence, which includes felsic volcanic rocks (rhyolites) with U–Pb ages in zircons of 359.6 ± 1.6 Ma, and black shales of the Neves Formation of late Strunian age. Massive sulphides are enveloped by these shales, implying that felsic volcanism, mineralization and shale sedimentation are essentially coeval. This circumstance is considered highly prospective, as it represents an important exploration vector to target VMS mineralization across the IPB, in areas where the Lower VSC sequence is present. The Upper VSC sequence, with siliciclastic and volcanogenic sedimentary rocks of middle–late Visean age, shows no massive mineralization but a late Tournaisian (350.9 ± 2.3 Ma) volcanism with disseminated sulphides was also identified. Nevertheless, stratigraphic palynological gaps were found within the Strunian and in the Tournaisian sediments, between the Lower and Upper VSC sequences, reflecting probable erosion and uplift mechanisms linked with extensional tectonics. The Semblana and Monte Branco deposits and the Rosa Magra stockwork are enclosed by tectonic sheets that dismembered the VSC sequence in a fold-and-thrust tectonic complex, characteristic of the NE Neves–Corvo region. The methodologies used allow a geological comparison between Neves–Corvo and other IPB mine regions such as Lousal–Caveira, Herrerias, Tharsis and Aznalcollar.


Sign in / Sign up

Export Citation Format

Share Document