felsic volcanic rocks
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 44)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 366 ◽  
pp. 106437
Author(s):  
Carla Joana Santos Barreto ◽  
Mauricio Barcelos Haag ◽  
Jean Michel Lafon ◽  
Carlos Augusto Sommer ◽  
Lúcia Travassos da Rosa-Costa

2021 ◽  
Vol 62 (10) ◽  
pp. 1175-1187
Author(s):  
A.D. Nozhkin ◽  
O.M. Turkina ◽  
K.A. Savko

Abstract —The paper presents results of a petrogeochemical and isotope–geochronological study of the granite–leucogranite association of the Pavlov massif and felsic volcanics from the Elash graben (Biryusa block, southwest of the Siberian craton). A characteristic feature of the granite–leucogranites is their spatial and temporal association with vein aplites and pegmatites of the East Sayan rare-metal province. The U–Pb age of zircon from granites of the Pavlov massif (1852 ± 5 Ma) is close to the age of the pegmatites of the Vishnyakovskoe rare-metal deposit (1838 ± 3 Ma). The predominant biotite porphyritic granites and leucogranites of the Pavlov massif show variable alkali ratios (K2O/Na2O = 1.1–2.3) and ferroan (Fe*) index and a peraluminous composition; they are comparable with S-granites. The studied rhyolites of the Tagul River (SiO2 = 71–76%) show a low ferroan index, a high K2O/Na2O ratio (1.6–4.0), low (La/Yb)n values (4.3–10.5), and a clear Eu minimum (Eu/Eu* = 0.3–0.5); they are similar to highly fractionated I-granites. All coeval late Paleoproterozoic (1.88–1.85 Ga) granites and felsic volcanics of the Elash graben have distinct differences in composition, especially in the ferroan index and HREE contents, owing to variations in the source composition and melting conditions during their formation at postcollisions extension. The wide range of the isotope parameters of granites and felsic volcanic rocks (εNd from +2.0 to –3.7) and zircons (εHf from +3.0 to +0.8, granites of the Toporok massif) indicates the heterogeneity of the crustal basement of the Elash graben, which formed both in the Archean and in the Paleoproterozoic.


2021 ◽  
Vol 80 (19) ◽  
Author(s):  
Pooja Kshirsagar ◽  
Raúl Miranda-Avilés ◽  
Isidro Loza-Aguirre ◽  
Yanmei Li ◽  
María Jesús Puy y Alquiza ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 826
Author(s):  
Emilio Pascual ◽  
Teodosio Donaire ◽  
Manuel Toscano ◽  
Gloria Macías ◽  
Christian Pin ◽  
...  

VMS deposits in the Iberian Pyrite Belt (IPB), Spain and Portugal, constitute the largest accumulation of these deposits on Earth. Although several factors account for their genetic interpretation, a link between volcanism and mineralization is generally accepted. In many VMS districts, research is focused on the geochemical discrimination between barren and fertile volcanic rocks, these latter being a proxy of VMS mineralization. Additionally, the volcanological study of igneous successions sheds light on the environment at which volcanic rocks were emplaced, showing an emplacement depth consistent with that required for VMS formation. We describe a case on the El Almendro–Villanueva de los Castillejos (EAVC) succession, Spanish IPB, where abundant felsic volcanic rocks occur. According to the available evidence, their geochemical features, εNd signature and U–Pb dates suggest a possible link to VMS deposits. However, (paleo)volcanological evidence here indicates pyroclastic emplacement in a shallow water environment. We infer that such a shallow environment precluded VMS generation, a conclusion that is consistent with the absence of massive deposits all along this area. We also show that this interpretation lends additional support to previous models of the whole IPB, suggesting that compartmentalization of the belt had a major role in determining the sites of VMS deposition.


2021 ◽  
Author(s):  
Sanjeet K. Verma ◽  
Darío Torres‐Sánchez ◽  
Karla R. Hernández‐Martínez ◽  
Vivek P. Malviya ◽  
Pradip K. Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document