Effect of cadmium on active ion transport and cytotoxicity in cultured renal epithelial cells (A6)

1997 ◽  
Vol 11 (5) ◽  
pp. 717-722 ◽  
Author(s):  
B. Faurskov ◽  
H.F. Bjerregaard
1997 ◽  
Vol 25 (3) ◽  
pp. 271-277
Author(s):  
Henning F. Bjerregaard ◽  
Brian Faurskov

An epithelial cell line (A6) derived from the distal tubule of toad kidney, was used to study the effect of cadmium (Cd2+) on the increase in active ion transport induced by antidiuretic hormone (ADH). Addition of Cd2+ (1mM) to the basolateral solution of A6 epithelia generated an immediate and transient increase in active ion transport, measured as short circuit current (SCC). This increase was not affected by prior addition of ADH. However, there was a distinct inhibition of ADH-induced stimulation of SCC in epithelia pre-treated with Cd2+. Since cAMP serves as an intracellular messenger for ADH by increasing the ion permeability of the apical membrane in A6 epithelial cells, the effects of Cd2+ on enzymes involved in cAMP metabolism were measured. The results showed that Cd2+ markedly inhibits cAMP production by inhibiting adenylate cyclase (which had been stimulated with forskolin, magnesium or a non-hydrolysed GTP-analog), indicating that Cd2+ inhibits the catalytic subunit of adenylate cyclase. Furthermore, degradation of cAMP by phosphodiesterase was not stimulated by Cd2+, also suggesting that the mechanism by which Cd2+ inhibits the ADH-induced ion transport could be through inhibition of adenylate cyclase. Taken together, these results indicate that, in addition to the well-known toxic effect on the proximal tubule, Cd2+ could also have an effect on the distal part of the kidney, where the important hormonal regulation of salt and water homeostasis takes place.


Author(s):  
Hwa Jeong Lee ◽  
Kazuko Sagawa ◽  
Wei Shi ◽  
Heini Murer ◽  
Marilyn E. Morris

2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Kristoffer Bernhem ◽  
Jacopo M. Fontana ◽  
Daniel Svensson ◽  
Liang Zhang ◽  
Linnéa M. Nilsson ◽  
...  

AbstractActivation of the apoptotic pathway is a major cause of progressive loss of function in chronic diseases such as neurodegenerative and diabetic kidney diseases. There is an unmet need for an anti-apoptotic drug that acts in the early stage of the apoptotic process. The multifunctional protein Na+,K+-ATPase has, in addition to its role as a transporter, a signaling function that is activated by its ligand, the cardiotonic steroid ouabain. Several lines of evidence suggest that sub-saturating concentrations of ouabain protect against apoptosis of renal epithelial cells, a common complication and major cause of death in diabetic patients. Here, we induced apoptosis in primary rat renal epithelial cells by exposing them to an elevated glucose concentration (20 mM) and visualized the early steps in the apoptotic process using super-resolution microscopy. Treatment with 10 nM ouabain interfered with the onset of the apoptotic process by inhibiting the activation of the BH3-only protein Bad and its translocation to mitochondria. This occurred before the pro-apoptotic protein Bax had been recruited to mitochondria. Two ouabain regulated and Akt activating Ca2+/calmodulin-dependent kinases were found to play an essential role in the ouabain anti-apoptotic effect. Our results set the stage for further exploration of ouabain as an anti-apoptotic drug in diabetic kidney disease as well as in other chronic diseases associated with excessive apoptosis.


Sign in / Sign up

Export Citation Format

Share Document