camp metabolism
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jenny P. Nguyen ◽  
Matthew Bianca ◽  
Ryan D. Huff ◽  
Nicholas Tiessen ◽  
Mark D. Inman ◽  
...  

AbstractCystic fibrosis (CF) is a genetic disease characterized by CF transmembrane regulator (CFTR) dysfunction. With over 2000 CFTR variants identified, in addition to known patient to patient variability, there is a need for personalized treatment. The discovery of CFTR modulators has shown efficacy in certain CF populations, however there are still CF populations without valid therapeutic options. With evidence suggesting that single drug therapeutics are insufficient for optimal management of CF disease, there has been an increased pursuit of combinatorial therapies. Our aim was to test cyclic AMP (cAMP) modulation, through ATP Binding Cassette Transporter C4 (ABCC4) and phosphodiesterase-4 (PDE-4) inhibition, as a potential add-on therapeutic to a clinically approved CFTR modulator, VX-770, as a method for increasing CFTR activity. Human airway epithelial cells (Calu-3) were used to test the efficacy of cAMP modulation by ABCC4 and PDE-4 inhibition through a series of concentration–response studies. Our results showed that cAMP modulation, in combination with VX-770, led to an increase in CFTR activity via an increase in sensitivity when compared to treatment of VX-770 alone. Our study suggests that cAMP modulation has potential to be pursued as an add-on therapy for the optimal management of CF disease.


2020 ◽  
Author(s):  
Jenny P. Nguyen ◽  
Matthew Bianca ◽  
Ryan D. Huff ◽  
Nicholas Tiessen ◽  
Mark D. Inman ◽  
...  

ABSTRACTCystic fibrosis (CF) is a genetic disease characterized by CF transmembrane regulator (CFTR) dysfunction. With over 2000 CFTR variants identified, in addition to known patient to patient variability, there is a need for personalized treatment. The discovery of CFTR modulators has shown efficacy in certain CF populations, however there are still CF populations without valid therapeutic options. With evidence suggesting that single drug therapeutics are insufficient for optimal management of CF disease, there has been an increased pursuit of combinatorial therapies. Our aim was to test cyclic AMP (cAMP) modulation, through ATP Binding Cassette Transporter C4 (ABCC4) and phosphodiesterase-4 (PDE-4) inhibition, as a potential add-on therapeutic to a clinically approved CFTR modulator, VX-770, as a method for increasing CFTR activity. Human airway epithelial cells (Calu-3) were used to test the efficacy of cAMP modulation by ABCC4 and PDE-4 inhibition through a series of concentration-response studies. Our results showed that cAMP modulation, in combination with VX-770, led to an increase in CFTR activity via an increase in sensitivity when compared to treatment of VX-770 alone. Our study suggests that cAMP modulation has potential to be pursued as an add-on therapy for the optimal management of CF disease.


2019 ◽  
Vol 5 (5) ◽  
pp. eaav5562 ◽  
Author(s):  
Ruochan Chen ◽  
Ling Zeng ◽  
Shan Zhu ◽  
Jiao Liu ◽  
Herbert J. Zeh ◽  
...  

The ability of cytosolic lipopolysaccharide (LPS) to activate caspase-11–dependent nonclassical inflammasome is intricately controlled to avoid excessive inflammatory responses. However, very little is known about the regulatory role of various metabolic pathways in the control of caspase-11 activation. Here, we demonstrate that l-adrenaline can act on receptor ADRA2B to inhibit the activation of the caspase-11 inflammasome by cytosolic LPS or Escherichia coli infection in macrophages. l-adrenaline–induced cAMP production via the enzyme ADCY4 promotes protein kinase A (PKA) activation, which then blocks the caspase-11–mediated proteolytic maturation of interleukin-1β, gasdermin D (GSDMD) cleavage, and consequent DAMP release. Inhibition of PDE8A-mediated cAMP hydrolysis limits caspase-11 inflammasome activation and pyroptosis in macrophages. Consequently, pharmacological modulation of the ADRA2B-ADCY4-PDE8A-PKA axis, knockout of caspase-11 (Casp11−/−), or Gsdmd inactivation (GsdmdI105N/I105N) similarly protects against LPS-induced lethality in poly(I:C)-primed mice. Our results provide previously unidentified mechanistic insight into immune regulation by cAMP and represent a proof of concept that immunometabolism constitutes a potential therapeutic target in sepsis.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Yi Wang ◽  
Jie Wang ◽  
Liping Guo ◽  
Xiumei Gao

We investigated the effects of Qishen Yiqi Dropping Pill (QSYQ) on platelets aggregation and its possible mechanisms. Hyperlipidemic model in rabbits was produced by a high fat/cholesterol diet for 6 weeks, the therapeutic effect of QSYQ with 2.0 g/kg, 1.0 g/kg, and 0.5 g/kg was observed. Fourteen days after drug treatment, platelet aggregation induced by adenosine diphosphate (ADP), arachidonic acid (AA), and collagen (COLL) was significantly reduced in rabbits of model group. Moreover,β-thromboglobulin (β-TG) level decreased obviously but no significant change in P-selectin and platelet factor 4 (PF4) level, while QSYQ significantly decreased the ratio of thromboxane B2 (TXB2) to 6-keto-prostaglandin F1α(6-Keto-PGF1α) and increased cyclic adenosine monophosphate (cAMP) level in rabbits. In summary, QSYQ can improve platelets aggregation and inhibit the over-release ofβ-TG in hyperlipidemic rabbits; and the increased cAMP level may be involved in this process. These results suggest that the antiplatelet aggregation effect of QSYQ may be due to its ability to increase cAMP level for improving cAMP metabolism.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Arunima Biswas ◽  
Arijit Bhattacharya ◽  
Pijush K. Das

Leishmania donovani, while invading macrophages, encounters striking shift in temperature and pH (from 22°C and pH 7.2 to 37°C and pH 5.5), which act as the key environmental trigger for differentiation, and increases cAMP level and cAMP-mediated responses. For comprehensive understanding of cAMP signaling, we studied the enzymes related to cAMP metabolism. A stage-specific and developmentally regulated isoform of receptor adenylate cyclase (LdRACA) showed to regulate differentiation-coupled induction of cAMP. The soluble acidocalcisomal pyrophosphatase, Ldvsp1, was the major isoform regulating cAMP level in association with LdRACA. A differentially expressed soluble cytosolic cAMP phosphodiesterase (LdPDEA) might be related to infection establishment by shifting trypanothione pool utilization bias toward antioxidant defense. We identified and cloned a functional cAMP-binding effector molecule from L. donovani (a regulatory subunit of cAMP-dependent protein kinase, LdPKAR) that may modulate metacyclogenesis through induction of autophagy. This study reveals the significance of cAMP signaling in parasite survival and infectivity.


Tuberculosis ◽  
2010 ◽  
Vol 90 (3) ◽  
pp. 208-212 ◽  
Author(s):  
Jeannette Barba ◽  
Angel H. Alvarez ◽  
Mario Alberto Flores-Valdez

2009 ◽  
Vol 76 (3) ◽  
pp. 161-177 ◽  
Author(s):  
E. Sacco ◽  
F. Pinto ◽  
D. Tienforti ◽  
F. Marangi ◽  
A. Destito ◽  
...  

Background Overactive bladder is a high prevalent and quality of life affecting disease. The mainstay of the medical therapy is represented by antimuscarinic drugs, but their side effects markedly affect patient compliance and prompt studies on novel investigational drugs. Methods A systematic literature search of peer-reviewed papers and meeting abstracts published by December 2008 was performed. PubMed databank was searched for original English articles, by using the following search terms: “overactive bladder” or “detrusor overactivity” or “urinary incontinence” and “treatment”, alone and linked to any potential molecular target or novel drug cited in the literature. Results Effective alternative pharmacological treatments are currently scarce, but many new promising compounds are emerging which target key molecular pathways involved in micturition control. The most promising potential therapeutic targets include central nervous system GABAergic inhibitory pathway, dopaminergic and serotoninergic systems, b-adrenoceptors and cAMP metabolism, nonadrenergic-noncholinergic mechanisms such as purinergic and neuropeptidergic systems, vanilloid receptor, bladder sensory nervous terminals, nonneuronal bladder signalling systems including urothelium and interstitial cells, prostanoids, Rho-kinase and different subtypes of potassium and calcium channels. Conclusions Despite the enormous amount of new biologic insight, very few novel pharmacological therapies seems to have passed the proof-of-concept clinical stage. The ultimate clinical utility of new drugs will depend on the ability to exploit tissue-specific differences and disease-related changes in molecular expression/function and to improve storage phase dysfunctions without interfering with the emptying phase. Further preclinical investigations and controlled clinical trials are urgently needed in this challenging field.


Sign in / Sign up

Export Citation Format

Share Document